Advertisement

Wave Turbulence: A Set of Stochastic Nonlinear Waves in Interaction

  • Eric FalconEmail author
Conference paper
Part of the Understanding Complex Systems book series (UCS)

Abstract

Wave turbulence concerns the study of dynamical and statistical properties of a field of random nonlinear waves in interaction. Although it occurs in various situations (ocean surface waves, internal waves in geophysics, Alfvén waves in astrophysical plasmas, or nonlinear waves in optics), well-controlled laboratory experiments on wave turbulence are relatively scarce despite the experimental efforts of the last decade. At the ICAND2018 conference, I presented a short review on laboratory experiments on wave turbulence on the surface of a fluid. I notably discussed the role of strongly nonlinear waves to better describe the dynamics of ocean waves. Here, I report some results obtained by our group on wave turbulence, performed in different experimental systems.

Notes

Acknowledgments

I thank all my co-authors quoted in the references of this article. This work was supported by the French National Research Agency via ANR DYSTURB project No. ANR-17-CE30-0004 (2017-2021), ANR TURBULON project No. ANR-12-BS04-0005 (2012-2016) and ANR TURBONDE project No. ANR-07-BLAN-0246 (2007-2011). The support of Novespace during Parabolic Flight Campaigns is acknowledged, as well as partial financial support by French National Space Agency (CNES).

References

  1. 1.
    E. Falcon, Laboratory experiments on wave turbulence. Discrete Contin. Dyn. Syst.-Ser. B 13, 819 (2010)MathSciNetCrossRefGoogle Scholar
  2. 2.
    V.E. Zakharov, V. L’vov, G. Falkovich, Kolmogorov Spectra of Turbulence I: Wave Turbulence (Springer, Berlin, 1992)Google Scholar
  3. 3.
    S. Nazarenko, Wave Turbulence (Springer, Berlin, 2011)Google Scholar
  4. 4.
    A.C. Newell, B. Rumpf, Wave turbulence. Annu. Rev. Fluid Mech. 43, 59 (2011)MathSciNetCrossRefGoogle Scholar
  5. 5.
    K. Hasselmann, On the non-linear energy transfer in a gravity-wave spectrum Part 1. General theory. J. Fluid. Mech. 12, 481 (1962)Google Scholar
  6. 6.
    D.J. Benney, A.C. Newell, The propagation of non-linear wave envelopes. J. Math. Phys. 46, 363 (1967)MathSciNetCrossRefGoogle Scholar
  7. 7.
    V.E. Zakharov, N.N. Filonenko, Energy spectrum for stochastic oscillations of the surface of liquid. Sov. Phys. Dokl. 11, 881–884 (1967)Google Scholar
  8. 8.
    V. Shrira, S. Nazarenko (eds.), Advances in Wave Turbulence, vol. 83 (World Scientific, Singapore, 2013)Google Scholar
  9. 9.
    E. Falcon, C. Laroche, S. Fauve, Observation of gravity-capillary wave turbulence. Phys. Rev. Lett. 98, 094503 (2007)Google Scholar
  10. 10.
    E. Falcon, S. Fauve, C. Laroche, Observation of intermittency in wave turbulence. Phys. Rev. Lett. 98, 154501 (2007)CrossRefGoogle Scholar
  11. 11.
    E. Falcon, S.G. Roux, C. Laroche, On the origin of intermittency in wave turbulence. EPL (Eur. Lett.) 90, 34005 (2010)CrossRefGoogle Scholar
  12. 12.
    E. Falcon, S.G. Roux, B. Audit, Revealing intermittency in experimental data with steep power spectra. EPL (Eur. Lett.) 90, 50007 (2010)CrossRefGoogle Scholar
  13. 13.
    E. Falcon, S. Aumaître, C. Falcón, C. Laroche, S. Fauve, Fluctuations of energy flux in wave turbulence. Phys. Rev. Lett. 100, 064503 (2008)CrossRefGoogle Scholar
  14. 14.
    E. Herbert, N. Mordant, E. Falcon, Observation of the nonlinear dispersion relation and spatial statistics of wave turbulence on the surface of a fluid. Phys. Rev. Lett. 105, 144502 (2010)CrossRefGoogle Scholar
  15. 15.
    S. Aumaître, E. Falcon, S. Fauve, Fluctuations of the energy flux in wave turbulence, pp. 53–72, in [8]Google Scholar
  16. 16.
    C. Falcón, E. Falcon, Fluctuations of energy flux in a simple dissipative out-of-equilibrium system. Phys. Rev. E 79, 041110 (2009)CrossRefGoogle Scholar
  17. 17.
    A. García-Cid, P. Gutiérrez, C. Falcón, S. Aumaître, E. Falcon, Statistics of injected power on a bouncing ball subjected to a randomly vibrating piston. Phys. Rev. E 92, 032915 (2015)CrossRefGoogle Scholar
  18. 18.
    E. Falcon, C. Laroche, Observation of depth-induced properties in wave turbulence on the surface of a fluid. EPL (Eur. Lett.) 94, 34003 (2011)CrossRefGoogle Scholar
  19. 19.
    L. Deike, M. Berhanu, E. Falcon, Decay of capillary wave turbulence. Phys. Rev. E 85, 066311 (2012)CrossRefGoogle Scholar
  20. 20.
    M. Berhanu, E. Falcon, Space-time-resolved capillary wave turbulence. Phys. Rev. E 89, 033003 (2013)CrossRefGoogle Scholar
  21. 21.
    M. Berhanu, E. Falcon, L. Deike, Turbulence of capillary waves forced by steep gravity waves. J. Fluid Mech. 850, 803 (2018)CrossRefGoogle Scholar
  22. 22.
    F. Haudin, A. Cazaubiel, L. Deike, T. Jamin, E. Falcon, M. Berhanu, Experimental study of three-wave interactions among capillary-gravity surface waves. Phys. Rev. E 93, 043110 (2016)CrossRefGoogle Scholar
  23. 23.
    L. Deike, M. Berhanu, E. Falcon, Energy flux measurement from the dissipated energy in capillary wave turbulence. Phys. Rev. E 89, 023003 (2014)CrossRefGoogle Scholar
  24. 24.
    L. Deike, B. Miquel, P. Gutiérrez, T. Jamin, B. Semin, M. Berhanu, E. Falcon, F. Bonnefoy, Role of the basin boundary conditions in gravity wave turbulence. J. Fluid Mech. 781, 196 (2015)MathSciNetCrossRefGoogle Scholar
  25. 25.
    A.N. Pushkarev, V.E. Zakharov, Turbulence of capillary waves. Phys. Rev. Lett. 76, 3320 (1996)CrossRefGoogle Scholar
  26. 26.
    Y. Pan, D.K.P. Yue, Understanding discrete capillary-wave turbulence using a quasi-resonant kinetic equation. J. Fluid Mech. 816, R1 (2017)MathSciNetCrossRefGoogle Scholar
  27. 27.
    L. Deike, D. Fuster, M. Berhanu, E. Falcon, Direct numerical simulations of capillary wave turbulence. Phys. Rev. Lett. 112, 234501 (2014)CrossRefGoogle Scholar
  28. 28.
    B. Issenmann, C. Laroche, E. Falcon, Wave turbulence in a two-layer fluid: coupling between free surface and interface waves. EPL (Eur. Lett.) 116, 64005 (2016)CrossRefGoogle Scholar
  29. 29.
    M.A. Donelan, J. Hamilton, W.H. Hui, Directional spectra of wind-generated waves. Philos. Trans. R. Soc. Lond. A 315, 509 (1985)CrossRefGoogle Scholar
  30. 30.
    P.A. Hwang, D.W. Wang, E.J. Walsh, W.B. Krabill, R.N. Swift, Airborne measurements of the wavenumber spectra of ocean surface waves. Part I: spectral slope and dimensionless spectral coefficient? J. Phys. Ocean. 30, 2753 (2000)CrossRefGoogle Scholar
  31. 31.
    L. Romero, W.K. Melville, Airborne observations of fetch-limited waves in the Gulf of Tehuantepec. J. Phys. Ocean. 40, 441 (2010)CrossRefGoogle Scholar
  32. 32.
    F. Leckler, F. Ardhuin, C. Peureux, A. Benetazzo, F. Bergamasco, V. Dulov, Analysis and interpretation of frequency-wavenumber spectra of young wind waves. J. Phys. Ocean. 45, 10 (2015)CrossRefGoogle Scholar
  33. 33.
    S. Nazarenko, S. Lukaschuk, Wave turbulence on water surfaces. Annu. Rev. Condens. Matter Phys. 7, 61 (2016)CrossRefGoogle Scholar
  34. 34.
    P. Denissenko, S. Lukaschuk, S. Nazarenko, Gravity wave turbulence in a laboratory flume. Phys. Rev. Lett. 99, 014501 (2007)CrossRefGoogle Scholar
  35. 35.
    P. Cobelli, A. Przadka, P. Petitjeans, G. Lagubeau, V. Pagneux, A. Maurel, Different regimes for water wave turbulence. Phys. Rev. Lett. 107, 214503 (2011)CrossRefGoogle Scholar
  36. 36.
    Q. Aubourg, A. Campagne, C. Peureux, F. Ardhuin, J. Sommeria, S. Viboud, N. Mordant, Three-wave and four-wave interactions in gravity wave turbulence. Phys. Rev. Fluids 2, 114802 (2017)CrossRefGoogle Scholar
  37. 37.
    B. Issenmann, E. Falcon, Gravity wave turbulence revealed by horizontal vibrations of the container. Phys. Rev. E 87, 011001(R) (2013)CrossRefGoogle Scholar
  38. 38.
    G. Michel, B. Semin, A. Cazaubiel, F. Haudin, T. Humbert, S. Lepot, F. Bonnefoy, M. Berhanu, E. Falcon, Self-similar gravity wave spectra resulting from the modulation of bound waves. Phys. Rev. Fluids 3, 054801 (2018)CrossRefGoogle Scholar
  39. 39.
    F. Bonnefoy, F. Haudin, G. Michel, B. Semin, T. Humbert, S. Aumaître, M. Berhanu, E. Falcon, Observation of resonant interactions among surface gravity waves. J. Fluid Mech. (Rapids) 805, R3 (2016)MathSciNetCrossRefGoogle Scholar
  40. 40.
    M.S. Longuet-Higgins, N.D. Smith, An experiment on third-order resonant wave interactions. J. Fluid Mech. 25, 417 (1966)CrossRefGoogle Scholar
  41. 41.
    L.F. McGoldrick, O.M. Phillips, N.E. Huang, T.H. Hodgson, Measurements of third-order resonant wave interactions. J. Fluid Mech. 25, 437 (1966)CrossRefGoogle Scholar
  42. 42.
    H. Tomita, Theoretical and experimental investigations of interaction among deep-water gravity waves. Rep. Ship Res. Inst. 26, 251 (1989)Google Scholar
  43. 43.
    F. Bonnefoy, F. Haudin, G. Michel, B. Semin, T. Humbert, S. Aumaître, M. Berhanu, E. Falcon, Experimental observation of four-wave resonant interactions in a wave basin. La Houille Blanche 5, 56 (2017)CrossRefGoogle Scholar
  44. 44.
    S.Y. Annenkov, V.I. Shrira, Direct numerical simulation of downshift and inverse cascade for water wave turbulence. Phys. Rev. Lett. 96, 204501 (2006); A.O. Korotkevitch, Simultaneous numerical simulation of direct and inverse cascades in wave turbulence. Phys. Rev. Lett. 101, 074501 (2008)Google Scholar
  45. 45.
    L. Deike, C. Laroche, E. Falcon, Experimental study of the inverse cascade in gravity wave turbulence. EPL (Eur. Lett.) 96, 34004 (2011)CrossRefGoogle Scholar
  46. 46.
    C. Falcón, E. Falcon, U. Bortolozzo, S. Fauve, Capillary wave turbulence on a spherical fluid surface in zero gravity. EPL (Eur. Lett.) 86, 14002 (2009)Google Scholar
  47. 47.
    S. Fauve, E. Falcon, Gravity-capillary wave turbulence, in Report to COSPAR (World Committee for Space Research), 37th Scientific Assembly, 13–20 July 2008, Montréal, Canada, CNES Ed. (2008), pp. 90–91Google Scholar
  48. 48.
    M. Berhanu, E. Falcon, S. Fauve, Wave turbulence in microgravity, in Report to COSPAR (World Committee for Space Research), 42th Scientific Assembly, 14–22 July 2018, Pasadena, USA, CNES Ed. (2018), pp. 66–67Google Scholar
  49. 49.
    G. Michel, F. Pétrélis, S. Fauve, Observation of thermal equilibrium in capillary wave turbulence. Phys. Rev. Lett. 118, 144502 (2017)Google Scholar
  50. 50.
    L. Deike, J.-C. Bacri, E. Falcon, Nonlinear waves on the surface of a fluid covered by an elastic sheet. J. Fluid Mech. 733, 394 (2013)Google Scholar
  51. 51.
    L. Deike, M. Berhanu, E. Falcon, Observation of hydroelastic three-wave interactions. Phys. Rev. Fluids 2, 064803 (2017)Google Scholar
  52. 52.
    F. Boyer, E. Falcon, Wave turbulence on the surface of a ferrofluid in a magnetic field. Phys. Rev. Lett. 101, 244502 (2008)Google Scholar
  53. 53.
    S. Dorbolo, E. Falcon, Wave turbulence on the surface of a ferrofluid in a horizontal magnetic field. Phys. Rev. E 83, 046303 (2011)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Université Paris Diderot, Université de Paris, CNRS, MSCParisFrance

Personalised recommendations