Advertisement

Opinion Network Modeling and Experiment

  • Michael GabbayEmail author
Conference paper
Part of the Understanding Complex Systems book series (UCS)

Abstract

We present a model describing the temporal evolution of opinions due to interactions among a network of individuals. This Accept-Shift-Constrict (ASC) model is formulated in terms of coupled nonlinear differential equations for opinions and uncertainties. The ASC model dynamics allows for the emergence and persistence of majority positions so that the mean opinion can shift even for a symmetric network. The model also formulates a distinction between opinion and rhetoric in accordance with a recently proposed theory of the group polarization effect. This enables the modeling of discussion-induced shifts toward the extreme without the typical modeling assumption of greater resistance to persuasion among extremists. An experiment is described in which triads engaged in online discussion. Simulations show that the ASC model is in qualitative and quantitative agreement with the experimental data.

Notes

Acknowledgements

This work was supported by the Office of Naval Research under grant N00014–15–1–2549.

References

  1. 1.
    C. Castellano, S. Fortunato, V. Loreto, Rev. Mod. Phys. 81(2), 591 (2009)CrossRefGoogle Scholar
  2. 2.
    D. Kempe, J. Kleinberg, S. Oren, A. Slivkins, Netw. Sci. 4(01), 1 (2016)CrossRefGoogle Scholar
  3. 3.
    A.V. Proskurnikov, R. Tempo, Ann. Rev. Control 43(Supplement C), 65 (2017)Google Scholar
  4. 4.
    M.H. DeGroot, J. Am. Stat. Assoc. 69(345), 118 (1974)CrossRefGoogle Scholar
  5. 5.
    N.E. Friedkin, E.C. Johnsen, Social Influence Network Theory: A Sociological Examination of Small Group Dynamics (Cambridge University Press, Cambridge, UK, 2011)CrossRefGoogle Scholar
  6. 6.
    R. Olfati-Saber, J.A. Fax, R.M. Murray, Proc. IEEE 95(1), 215 (2007)CrossRefGoogle Scholar
  7. 7.
    J. Lorenz, Int. J. Mod. Phys. C 18(12), 1819 (2007)CrossRefGoogle Scholar
  8. 8.
    M. Gabbay, Phys. A 378, 118 (2007)CrossRefGoogle Scholar
  9. 9.
    D.G. Myers, H. Lamm, Psychol. Bull. 83(4), 602 (1976)CrossRefGoogle Scholar
  10. 10.
    D.J. Isenberg, J. Pers. Soc. Psychol. 50(6), 1141 (1986)CrossRefGoogle Scholar
  11. 11.
    C.R. Sunstein, J. Polit. Philos. 10(2), 175 (2002)CrossRefGoogle Scholar
  12. 12.
    M. Gabbay, Z. Kelly, J. Reedy, J. Gastil, Soc. Psychol. Q. 81(3), 248 (2018)CrossRefGoogle Scholar
  13. 13.
    G. Deffuant, F. Amblard, G. Weisbuch, T. Faure, J. Artif. Soc. Soc. Simul. 5, 4 (2002)Google Scholar
  14. 14.
    N.E. Friedkin, IEEE Control Syst. 35(3), 40 (2015)Google Scholar
  15. 15.
    J.A. Sniezek, Organ. Behav. Hum. Decis. Process. 52(1), 124 (1992)CrossRefGoogle Scholar
  16. 16.
    M. Moussaid, J.E. Kammer, P.P. Analytis, H. Neth, PLOS ONE 8(11), 1 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Applied Physics LaboratoryUniversity of WashingtonSeattleUSA

Personalised recommendations