Advertisement

Congestion Avoidance on Networks Using Independent Memory Information

  • Takayuki KimuraEmail author
Conference paper
Part of the Understanding Complex Systems book series (UCS)

Abstract

We propose in this paper a new routing method that utilizes hop distance information and transmitting history. Most of conventional routing methods use global and real-time information such as the number of waiting packets at nodes. In addition, they assumed that these real-time information can be accessed instantaneously at every node. These unrealistic network circumstances, however, limit applicability of routing methods. On the other hand, our proposed method in this paper uses transmitting histories held by each node to diversify routes of packets. In addition, any packets to exchange global information is not necessary. Numerical simulations indicate that our proposed method shows higher arrival rate of packets for various scale-free type communication network models.

Notes

Acknowledgments

The research of T.K. was partially supported by a Grant-in-Aid for Young Scientists (B) from JSPS (No.16K21327).

References

  1. 1.
    D.J. Watts, D.J. Watts, S.H. Strogatz, S.H. Strogatz, Nature 393, 440 (1998)CrossRefGoogle Scholar
  2. 2.
    A.L. Barabási, R. Albert, Science 286, 509 (1999)MathSciNetCrossRefGoogle Scholar
  3. 3.
    R. Guimerà, A. Díaz-Guilera, F. Vega-Redondo, A. Cabrales, A. Arenas, Phys. Rev. Lett. 89(24), 248701 (2002)CrossRefGoogle Scholar
  4. 4.
    S. Chen, W. Huang, C. Cattani, G. Altieri, Math. Probl. Eng. 2012(25), 1 (2012)Google Scholar
  5. 5.
    E.W. Dijkstra, Numer. Math. 1(1), 269 (1959)MathSciNetCrossRefGoogle Scholar
  6. 6.
    G. Yan, T. Zhou, B. Hu, Z.Q. Fu, B.H. Wang, Phys. Rev. E 73(4), 046108 (2006)CrossRefGoogle Scholar
  7. 7.
    P. Echenique, J. Gómez-Gardeñes, Y. Moreno, Europhys. Lett. 71(2), 325 (2005)CrossRefGoogle Scholar
  8. 8.
    M. Tang, Z. Liu, X. Liang, P.M. Hui, Phys. Rev. E 80(2), 026114 (2009)CrossRefGoogle Scholar
  9. 9.
    W. Huang, T.W.S. Chow, Chaos 19(4), 043124 (2009)CrossRefGoogle Scholar
  10. 10.
    W.X. Wang, C.Y. Yin, G. Yan, B.H. Wang, Phys. Rev. E 74(1), 016101 (2006)CrossRefGoogle Scholar
  11. 11.
    W.X. Wang, B.H. Wang, C.Y. Yin, Y.B. Xie, T. Zhou, Phys. Rev. E 73(2), 026111 (2006)CrossRefGoogle Scholar
  12. 12.
    C. Hong, Phys. A 424, 242 (2015)CrossRefGoogle Scholar
  13. 13.
    T. Kimura, H. Nakajima, T. Ikeguchi, Phys. A 376, 658 (2007)CrossRefGoogle Scholar
  14. 14.
    T. Kimura, T. Takamizawa, K. Kimura, K. Jin’no, Nonlinear Theory Appl. IEICE 6(2), 263 (2015)CrossRefGoogle Scholar
  15. 15.
    T. Kimura, T. Takamizawa, T. Matsuura, Am. J. Oper. Res. 06(04), 343 (2016)CrossRefGoogle Scholar
  16. 16.
    T. Kimura, T. Ikeguchi, Neural Comput. Appl. 16(6), 519 (2007)CrossRefGoogle Scholar
  17. 17.
    T. Kimura, T. Ikeguchi, Integr. Comput.-Aided Eng. 14, 307 (2007)CrossRefGoogle Scholar
  18. 18.
    T. Kimura, T. Hiraguri, T. Ikeguchi, Am. J. Oper. Res. 02(03), 348 (2012)CrossRefGoogle Scholar
  19. 19.
    Y. Morita, T. Kimura, Nonlinear Theory Appl. IEICE 9(1), 95 (2018)CrossRefGoogle Scholar
  20. 20.
    T. Kimura, T. Ikeguchi, C.K. Tse, Am. J. Oper. Res. 02(01), 73 (2012)CrossRefGoogle Scholar
  21. 21.
    X. Ling, M.B. Hu, R. Jiang, Q.S. Wu, Phys. Rev. E 81(1), 016113 (2010)CrossRefGoogle Scholar
  22. 22.
    M.B. Hu, W.X. Wang, R. Jiang, Q.S. Wu, Y.H. Wu, Phys. Rev. E 75(3), 036102 (2007)CrossRefGoogle Scholar
  23. 23.
    M. Faloutsos, P. Faloutsos, C. Faloutsos, in SIGCOMM (1999), pp. 251–262Google Scholar
  24. 24.
    A. Arenas, A. Díaz-Guilera, R. Guimerà, Phys. Rev. Lett. 86(14), 3196 (2001)CrossRefGoogle Scholar
  25. 25.
    K.I. Goh, B. Kahng, D. Kim, Phys. Rev. Lett. 87(27), 278701 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Electrical, Electronics, and Communication Engineering, Faculty of Fundamental EngineeringNippon Institute of TechnologyMiyashiro, SaitamaJapan

Personalised recommendations