Advertisement

Hardware Implementation of Chaos Control Using a Proportional Feedback Controller

  • Benjamin K. Rhea
  • R. Chase Harrison
  • D. Aaron Whitney
  • Frank T. Werner
  • Andrew W. Muscha
  • Robert N. DeanEmail author
Conference paper
Part of the Understanding Complex Systems book series (UCS)

Abstract

This paper presents an electronic implementation of a controller for an exact solvable chaotic oscillator. The controller uses a proportional feedback control scheme to stabilize the chaotic oscillator, with both analog and digital components. The analog hardware implementation uses commercial-off-the-shelf (COTS) digital logic components and an analog feedback path in order to generate a control signal that produces small voltage perturbations in the oscillator’s trajectory. The digital portion of the control effort is contained on a single microcontroller, which contains the information to be encoded into the chaotic oscillator. The perturbations are aperiodically applied using a clock that is generated from the oscillator’s output signal so that the pulses can be applied to the oscillator at the correct times. In order to achieve different stabilized orbits, a variable gain stage was added to the controller, using an operational amplifier and a potentiometer, such that the magnitude of the control pulses can be adjusted. This controller is used to demonstrate stabilization of various periodic orbits in a double scroll exact solvable chaotic oscillator, which is shown in the time domain and in phase portraits. This type of controller could be used to encode information into chaotic waveforms for communication systems.

References

  1. 1.
    A. Beal, J. Bailey, S. Hale, R. Dean, M. Hamilton, J. Tugnait, D. Hahs, N. Corron, Design and simulation of a high frequency exact solvable chaotic oscillator, in MILCOM 2012 (IEEE, 2012), pp. 1–6Google Scholar
  2. 2.
    N.J. Corron, An exactly solvable chaotic differential equation. Dyn. Contin. Discret. Impuls. Syst. Ser. A Math. Anal. 16, 777–788 (2009)MathSciNetzbMATHGoogle Scholar
  3. 3.
    N.J. Corron, J.N. Blakely, M.T. Stahl, A matched filter for chaos. Chaos Interdiscip. J. Nonlinear Sci. 20(2), 023,123 (2010)CrossRefGoogle Scholar
  4. 4.
    J. Dattani, J.C. Blake, F.M. Hilker, Target-oriented chaos control. Phys. Lett. A 375(45), 3986–3992 (2011)CrossRefGoogle Scholar
  5. 5.
    C. Grebogi, Y.C. Lai, Controlling chaos. Handbook of chaos control (Wiley, New York, 1999), pp. 1–20Google Scholar
  6. 6.
    S. Hayes, C. Grebogi, E. Ott, Communicating with chaos. Phys. Rev. Lett. 70(20), 3031 (1993)CrossRefGoogle Scholar
  7. 7.
    S. Hayes, C. Grebogi, E. Ott, A. Mark, Experimental control of chaos for communication. Phys. Rev. Lett. 73(13), 1781 (1994)CrossRefGoogle Scholar
  8. 8.
    E.R. Hunt, Stabilizing high-period orbits in a chaotic system: the diode resonator. Phys. Rev. Lett. 67(15), 1953 (1991)CrossRefGoogle Scholar
  9. 9.
    E. Ott, C. Grebogi, J.A. Yorke, Controlling chaos. Phys. Rev. Lett. 64(11), 1196 (1990)MathSciNetCrossRefGoogle Scholar
  10. 10.
    K. Pyragas, Delayed feedback control of chaos. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 364(1846), 2309–2334 (2006)MathSciNetCrossRefGoogle Scholar
  11. 11.
    T. Saito, H. Fujita, Chaos in a manifold piecewise linear system. Electron. Commun. Jpn. (Part I Commun.) 64(10), 9–17 (1981)MathSciNetCrossRefGoogle Scholar
  12. 12.
    T. Shinbrot, C. Grebogi, J.A. Yorke, E. Ott, Using small perturbations to control chaos. Nature 363(6428), 411 (1993)CrossRefGoogle Scholar
  13. 13.
    F.T. Werner, B.K. Rhea, R.C. Harrison, R.N. Dean, Electronic implementation of a practical matched filter for a chaos-based communication system. Chaos Solitons Fractals 104, 461–467 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Benjamin K. Rhea
    • 1
  • R. Chase Harrison
    • 1
  • D. Aaron Whitney
    • 1
  • Frank T. Werner
    • 1
  • Andrew W. Muscha
    • 1
  • Robert N. Dean
    • 1
    Email author
  1. 1.Auburn UniversityAuburnUSA

Personalised recommendations