Advertisement

Intentional Nonlinearity in Energy Harvesting Systems

  • Brian P. MannEmail author
  • Samuel C. Stanton
  • Brian P. Bernard
Conference paper
Part of the Understanding Complex Systems book series (UCS)

Abstract

The success of portable electronics, remote sensing, and surveillance equipment is dependent upon the availability of remote power. While batteries can sometimes fulfill this role over short time intervals, batteries are often undesirable due to their finite life span, need for replacement and environmental impact. Instead, researchers have begun investigating methods of scavenging energy from the environment to eliminate the need for batteries or to simply prolong their life. While solar, chemical and thermal sources of energy transfer are sometimes viable, many have recognized the abundance of environmental disturbances that cause either rigid body motion or structural vibrations. This paper describes recent research efforts focused on the intentional use of nonlinearity to enhance the capabilities of energy harvesting systems. In addition, this paper identifies some of the primary challenges that arise in nonlinear harvesters and some new strategies to resolve these challenges. For example, nonlinearities can often result in multiple attractors with both desirable and undesirable responses that may co-exist. I will describe an approach that uses small perturbations to steer the dynamic response to the desirable attractor, thus leveraging the basins of attraction. Other examples will highlight the potential for nonlinear electromechanical transduction and comparisons for single frequency, multi-frequency, and stochastic environments.

Notes

Acknowledgments

Research support from the U.S. Army Research Office is gratefully acknowledged.

References

  1. 1.
    S. Roundy, P.K. Wright, J.M. Rabaey, Energy Scavenging for Wireless Sensor Networks (Springer, New York, 2003)Google Scholar
  2. 2.
    C.R. Saha, Optimization of and electromagnetic energy harvesting device. IEEE Trans. Mag. 42(10), 3509–3511, 42CrossRefGoogle Scholar
  3. 3.
    S.M. Shahruz, Limits of performance of mechanical band-pass filters used in energy scavenging. J. Sound Vib. 293(1–2), 449–461 (2006)CrossRefGoogle Scholar
  4. 4.
    S.M. Shahruz, Design of mechanical band-pass filters for energy scavenging. J. Sound Vib. 292(3–5), 987–998 (2006)CrossRefGoogle Scholar
  5. 5.
    N.G. Stephen, On energy harvesting from ambient vibration. J. Sound Vib. 293, 409–425 (2006)CrossRefGoogle Scholar
  6. 6.
    B. Yang, C. Lee, W. Xiang, J. Xie, J.H. He, R.K. Kotlanka, S.P. Low, H. Feng, Electromagnetic energy harvesting from vibrations of multiple frequencies. J. Micromech. Microeng. 19(035001), 1–8 (2009)Google Scholar
  7. 7.
    B.C. Yen, J.H. Lang, A variable-capacitance vibration-to-electric energy harvester. IEEE Trans. Circuits Syst. 1 –Fundam. Theory Appl. 53(2), 288–295 (2005)CrossRefGoogle Scholar
  8. 8.
    B. Mann, N. Sims, Energy harvesting from the nonlinear oscillations of magnetic levitation. J. Sound Vib. 319, 515–530 (2009)CrossRefGoogle Scholar
  9. 9.
    G.A. Lesieutre, G.K. Ottman, H.F. Hofmann, Damping as a result of piezoelectric energy harvesting. J. Sound Vib. 269(3–5), 991–1001 (2004)CrossRefGoogle Scholar
  10. 10.
    H.A. Sodano, D.J. Inman, G. Park, Generation and storage of electricity from power harvesting devices. J. Intell. Mater. Syst. Struct. 16, 67–75 (2005)CrossRefGoogle Scholar
  11. 11.
    H.A. Sodano, D.J. Inman, G. Park, Comparison of piezoelectric energy harvesting devices for recharging batteries. J. Intell. Mater. Syst. Struct. 16, 799–807 (2005)CrossRefGoogle Scholar
  12. 12.
    S.P. Beeby, R.N. Torah, M.J. Tudor, P. Glynne-Jones, T. O’Donnell, C.R. Saha, S. Roy, A micro electromagnetic generator for vibration energy harvesting. J. Micromech. Microeng. 17, 1257–1265 (2007)CrossRefGoogle Scholar
  13. 13.
    S.B. Horowitz, M. Sheplak, L.N. Cattafesta, T. Nishida, A mems acoustic energy harvester. J. Micromech. Microeng. 16, 174–181 (2006)CrossRefGoogle Scholar
  14. 14.
    B. Mann, B. Owens, Investigations of a nonlinear energy harvester with a bistable potential well. J. Sound Vib. 329, 1215–1226 (2010)CrossRefGoogle Scholar
  15. 15.
    S.P. Beeby, M.J. Tudor, N.M. White, Energy harvesting vibration sources for microsystems applications. Meas. Sci. Technol. 17, 175–195 (2006)CrossRefGoogle Scholar
  16. 16.
    E.S. Leland, P.K. Wright, Resonance tuning of piezoelectric vibration energy scavenging generators using compressive axial load. Smart Mater. Struct. 15, 1413–1420 (2006)CrossRefGoogle Scholar
  17. 17.
    G. Poulin, E. Sarraute, F. Costa, Generation of electrical energy for portable devices comparative study of an electromagnetic and piezoelectric system. Sens. Actuators A 116, 461–471 (2004)CrossRefGoogle Scholar
  18. 18.
    J.M. Renno, M.F. Daqaq, D.J. Inman, On the optimal energy harvesting from a vibration source. J. Sound Vib. 320, 386–405 (2009)CrossRefGoogle Scholar
  19. 19.
    S. Roundy, On the effectiveness of vibration based energy harvesting. J. Intell. Syst. Struct. 16, 809–823 (2005)CrossRefGoogle Scholar
  20. 20.
    A. Erturk, J. Hoffmann, D.J. Inman, A piezomagnetoelastic structure for broadband vibration energy harvesting. Appl. Phys. Lett. 94(254102), 1–4 (2009)Google Scholar
  21. 21.
    S.C. Stanton, C.C. McGehee, B.P. Mann, Reversible hysteresis for broadband magnetopiezoelastic energy harvesting. Appl. Phys. Lett. 95, 174103–3 (2009)CrossRefGoogle Scholar
  22. 22.
    A. Triplett, D.D. Quinn, The effect of nonlinear piezoelectric coupling on vibration-based energy harvesting. J. Intell. Mater. Syst. Struct. 20(16), 1959–1967 (2009)CrossRefGoogle Scholar
  23. 23.
    M.S. Soliman, E.M. Abdel-Rahman, E.F. El-Saadany, A wideband vibration-based energy harvester. J. Micromech. Microeng. 18, 1–11 (2008)CrossRefGoogle Scholar
  24. 24.
    S.C. Stanton, C.C. McGehee, B.P. Mann, Nonlinear dynamics for broadband energy harvesting: investigation of a bistable piezoelectric inertial generator. Phys. D: Nonlinear Phenom. 239, 640–653 (2010)CrossRefGoogle Scholar
  25. 25.
    V.R. Challa, M.G. Prasad, Y. Shi, F.T. Fisher, A vibration energy harvesting device with bidirectional resonance frequency tunability. Smart Mater. Struct. 17(1), 015035 (2008)CrossRefGoogle Scholar
  26. 26.
    D.A.W. Barton, S.G. Burrow, L.R. Clare, Energy harvesting from vibrations with a nonlinear oscillator. J. Vib. Acoust. 132(2), 021009 (2010)CrossRefGoogle Scholar
  27. 27.
    A. Cammarano, S.G. Burrow, D.A.W. Barton, Modelling and experimental characterization of an energy harvester with bi-stable compliance characteristic. J. Syst. Control Eng. 225, 475–484 (2011)Google Scholar
  28. 28.
    B.A.M. Owens, B.P. Mann, Linear and nonlinear electromagnetic coupling models in vibration-based energy harvesting. J. Sound Vib. 331, 922–937 (2012)CrossRefGoogle Scholar
  29. 29.
    H.W. Coleman, W.G. Steele, Experimentation and Uncertainty Analysis for Engineers, 2nd edn. (Wiley, New York, 1999)Google Scholar
  30. 30.
    B.P. Mann, D.A.W. Barton, B.A.M. Owens, Uncertainty in performance for linear and nonlinear energy harvesting strategies. J. Intell. Mater. Syst. Struct. 23, 1451–1460 (2012)CrossRefGoogle Scholar
  31. 31.
    B.P. Mann, Energy criterion for potential well escapes in a bistable magnetic pendulum. J. Sound Vib. 323, 864–867 (2009)CrossRefGoogle Scholar
  32. 32.
    R.L. Harne, K.W. Wang, A review of the recent research on vibration energy harvesting via bistable systems. Smart Mater. Struct. 22(023001), 1–12 (2013)Google Scholar
  33. 33.
    S.C. Stanton, B.P. Mann, B.A.M. Owens, Harmonic balance analysis of the bistable piezoelectric inertial generator. J. Sound Vib. (2012)Google Scholar
  34. 34.
    Z. Wu, R.L. Harne, K.W. Wang, Energy harvester synthesis via coupled linear-bistable system with multistable dynamics. J. Appl. Mech. 25(8), 937–950 (2014)Google Scholar
  35. 35.
    S.C. Stanton, B.P. Mann, B.A.M. Owens, Melnikov theoretic methods for characterizing the dynamics of the bistable piezoelectric inertial generator in complex spectral environments. Phys. D 241, 711–720 (2012)CrossRefGoogle Scholar
  36. 36.
    L. Gammaitoni, I. Neri, H. Vocca, Nonlinear oscillators for vibration energy harvesting. Appl. Phys. Lett. 94, pp. 164102 (2009)CrossRefGoogle Scholar
  37. 37.
    M.F. Daqaq, R. Masana, A. Erturk, D.D. Quinn, On the role of nonlinearities in vibratory energy harvesting: a critical review and discussion. Appl. Mech. Rev. 66(4), pp (2014)Google Scholar
  38. 38.
    S.C. Stanton, A. Erturk, B.P. Mann, D.J. Inman, Nonlinear piezoelectricity in electroelastic energy harvesters: modeling and experimental identification. J. Appl. Phys. 108, 1–9 (2010)CrossRefGoogle Scholar
  39. 39.
    B.P. Bernard, B.P. Mann, Increasing viability of nonlinear energy harvesters by adding an excited dynamic magnifier. J. Intell. Mater. Syst. Struct. 29(6), 1196–1205 (2017)CrossRefGoogle Scholar
  40. 40.
    T. Seuaciuc-Osório, M.F. Daqaq, Energy harvesting under excitations of time-varying frequency. J. Sound Vib. 329, 2497–2515 (2010)CrossRefGoogle Scholar
  41. 41.
    R. Ramlan, M. Brennan, B. Mace, I. Kovacic, Potential benefits of a non-linear stiffness in an energy harvesting device. Nonlinear Dyn. 59, 545–558 (2010)CrossRefGoogle Scholar
  42. 42.
    B.J. Bowers, D.P. Arnold, Spherical, rolling magnet generators for passive energy harvesting from human motion. J. Micromech. Microeng. 19(094008), 1–7 (2009)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Brian P. Mann
    • 1
    Email author
  • Samuel C. Stanton
    • 2
  • Brian P. Bernard
    • 3
  1. 1.Duke UniversityDurhamUSA
  2. 2.Army Research OfficeDurhamUSA
  3. 3.Shreiner UniversityKerrvilleUSA

Personalised recommendations