Advertisement

Privacy, Trust and Ethical Issues

  • Nigel Shadbolt
  • Kieron O’Hara
  • David De Roure
  • Wendy Hall
Chapter
Part of the Lecture Notes in Social Networks book series (LNSN)

Abstract

This chapter looks at the issues that social machines raise about privacy, trust and ethics. The chapter begins by surveying the ethical significance of the various roles that are created by social machines, including the individual participant and the designer, and looks at the rights and duties that the occupants of these roles have. Social machines are considered as a particular type of social enterprise or project. The necessity for social machines to generate trust, and how that might impact the wider ethical status of social machines, is also considered. A type of ethical functionalism is described in which the flourishing of the social machine is taken as the basic requirements of ethics considered only from within the machine, not taking into account the outside content. Attitudes towards data and algorithms are considered, and means to render flows of data transparent are discussed, as means of putting social machine participants in control. Such means include privacy indicators, personal data stores and the X-Ray Refine system that explains data flows from a user’s smartphone. The ways in which people use technology to present themselves in certain ways (informational self-determination) are studied, and some experiments with social technologies that could aid informational self-determination are reported. In a final section, the specific and sensitive case of healthcare social machines is surveyed, including looking at areas where data use has a social aspect, such as participatory digital surveillance, quantified patient and social palliative care. Modelling social aspects of institutional procedures in the medical space is also considered, taking the examples of integrated care pathways and data safe havens.

Keywords

Algorithms Crime Data Data flow Data safe havens Data use Deception Designer (of social machines) Digital participatory surveillance Emergence Ethical functionalism Ethical roles Ethics Exploitation Fairness (of algorithms) Healthcare Heart Manual Integrated care pathways Journalism Justice Palliative social media Personal data stores (PDSs) Policing Privacy Privacy indicators Privacy languages Quantified patient Scale Self-curation Smartphones Social computation Telos Transport Trust X-Ray Refine 

References

  1. Acquisti A, Adjerid I, Balebako R, Brandimarte L, Cranor LF, Komanduri S, Leon PG, Sadeh N, Schaub F, Sleeper M, Wang Y, Wilson S (2017) Nudges for privacy and security: understanding and assisting users’ choices online. ACM Comput Surv 50(3):44.  https://doi.org/10.1145/3054926 CrossRefGoogle Scholar
  2. Agrawal A, Gans J, Goldfarb A (2018) Prediction machines: the simple economics of artificial intelligence. Harvard Business School Press, BostonGoogle Scholar
  3. Alexandru C-A, Clutterbuck D, Papapanagiotou P, Fleuriot J, Manataki A (2017) A step towards the standardisation of HIV care practices. In: van den Broek EL, Fred A, Gamboa H, Vaz M (eds) Proceedings of the 10th international joint conference on biomedical engineering systems and technologies, vol 5. HEALTHINF, pp. 457–462.  https://doi.org/10.5220/0006249004350440
  4. Ancker JS, Witteman HO, Hafeez B, Provencher T, Van de Graaf M, Wei E (2015) “You get reminded you’re a sick person”: personal data tracking and patients with multiple chronic conditions. J Med Internet Res 17(8):e202.  https://doi.org/10.2196/jmir.4209 CrossRefGoogle Scholar
  5. Aoki PM, Woodruff A (2005) Making space for stories: ambiguity in the design of personal communication systems. In: Proceedings of the SIGCHI conference on human factors in computing systems (CHI ’05). ACM, New York, pp 181–190.  https://doi.org/10.1145/1054972.1054998 CrossRefGoogle Scholar
  6. Ardissono L, Goy A, Petrone G, Segnan M, Torasso P (2003) Intrigue: personalized recommendation of tourist attractions for desktop and hand held devices. Appl Artif Intell 17(8–9):687–714.  https://doi.org/10.1080/713827254 CrossRefGoogle Scholar
  7. Asaro PM (2006) What we should want from a robot ethic. Int Rev Inf Ethics 6(12):9–16Google Scholar
  8. Ayres I (2007) Super crunchers: how anything can be predicted. John Murray, LondonGoogle Scholar
  9. Baier AC (1994) Trust and anti-trust. In: Moral prejudices: essays on ethics. Harvard University Press, Cambridge, MA, pp 95–129Google Scholar
  10. Bakker L (2015) Illegality for the general good? Vigilantism and social responsibility in contemporary Indonesia. Crit Anthropol 35(1):78–93.  https://doi.org/10.1177/0308275X14557092 MathSciNetCrossRefGoogle Scholar
  11. Bartlett B (2017) The truth matters: a citizen’s guide to separating facts from lies and stopping fake news in its tracks. Ten Speed Press, New YorkGoogle Scholar
  12. Bellovin SM (2014) By any means possible: how intelligence agencies have gotten their data. IEEE Secur Priv 12(4):80–84.  https://doi.org/10.1109/MSP.2014.63 CrossRefGoogle Scholar
  13. Benisch M, Kelley PG, Sadeh N, Cranor LF (2011) Capturing location-privacy preferences: quantifying accuracy and user-burden tradeoffs. Pers Ubiquit Comput 15(7):679–694.  https://doi.org/10.1007/s00779-010-0346-0 CrossRefGoogle Scholar
  14. Berners-Lee T, Fischetti T (1999) Weaving the web: the original design and ultimate destiny of the world wide web. HarperCollins, New YorkGoogle Scholar
  15. Binns R, Zhao J, Van Kleek M, Shadbolt N, Liccardi I, Weitzner D (2017) My bank already gets this data: exposure minimisation and company relationships in privacy decision-making. In: Proceedings of the 2017 CHI conference extended abstracts on human factors in computing systems. ACM, New York, pp 2403–2409.  https://doi.org/10.1145/3027063.3053255 CrossRefGoogle Scholar
  16. Binns R, Lyngs U, Van Kleek M, Zhao J, Libbert T, Shadbolt N (2018a) Third party tracking in the mobile ecosystem. In: Proceedings of the 10th ACM conference on web science (WebSci ’18). ACM, New York, pp 23–31.  https://doi.org/10.1145/3201064.3201089 CrossRefGoogle Scholar
  17. Binns R, Van Kleek M, Veale M, Lyngs U, Zhao J, Shadbolt N (2018b) “It’s reducing a human being to a percentage”: perceptions of justice in algorithmic decisions. In: Proceedings of the 2018 CHI conference on human factors in computing systems (CHI ’18). ACM, New York, p 377.  https://doi.org/10.1145/3173574.3173951 CrossRefGoogle Scholar
  18. Boyd D (2014) It’s complicated: the social lives of networked teens. Yale University Press, New HavenGoogle Scholar
  19. Boyd D, Crawford K (2012) Critical questions for big data: provocations for a cultural, technological, and scholarly phenomenon. Inf Commun Soc 15(5):662–679.  https://doi.org/10.1080/1369118X.2012.678878 CrossRefGoogle Scholar
  20. Brunton F, Nissenbaum H (2015) Obfuscation: a user’s guide for privacy and protest. MIT Press, Cambridge, MACrossRefGoogle Scholar
  21. Brush AJB, Jung J, Mahajan R, Martinez F (2013) Digital neighborhood watch: investigating the sharing of camera data amongst neighbors. In: Proceedings of the 2013 conference on computer supported cooperative work. ACM Library, New York, pp 693–700.  https://doi.org/10.1145/2441776.2441853 Google Scholar
  22. Buchanan EA (ed) (2004) Readings in virtual research ethics: issues and controversies. Information Science Publishing, LondonGoogle Scholar
  23. Buller DB, Burgoon JK (1996) Interpersonal deception theory. Commun Theory 6(3):203–242.  https://doi.org/10.1111/j.1468-2885.1996.tb00127.x CrossRefGoogle Scholar
  24. Burgoon JK, Parrott R, Le Poire BA, Kelley DL, Walther JB, Perry D (1989) Maintaining and restoring privacy through communication in different types of relationships. J Soc Pers Relat 6(2):131–158.  https://doi.org/10.1177/026540758900600201 CrossRefGoogle Scholar
  25. Carter P, Laurie GT, Dixon-Woods M (2015) The social licence for research: why care.data ran into trouble. J Med Ethics 41(5):404–409.  https://doi.org/10.1136/medethics-2014-102374 CrossRefGoogle Scholar
  26. Chan ND, Shaheen SA (2012) Ridesharing in North America: past, present and future. Transp Rev 32(1):93–112.  https://doi.org/10.1080/01441647.2011.621557 CrossRefGoogle Scholar
  27. Choe EK, Lee NB, Lee B, Pratt W, Kientz JA (2014) Understanding quantified-selfers’ practices in collecting and exploring personal data. In: Proceedings of the SIGCHI conference on human factors in computing systems (CHI ’14). ACM, New York, pp 1143–1152.  https://doi.org/10.1145/2556288.2557372 CrossRefGoogle Scholar
  28. Chung C-F, Cook J, Bales E, Zia J, Munson SA (2015) More than telemonitoring: health provider use and nonuse of life-log data in irritable bowel syndrome and weight management. J Med Internet Res 17(8):e203.  https://doi.org/10.2196/jmir.4364 CrossRefGoogle Scholar
  29. Claburn T (2017) Google nukes ad-blocker AdNauseam, sweeps remains out of Chrome Web Store, The Register. https://www.theregister.co.uk/2017/01/05/adnauseam_expelled_from_chrome_web_store/
  30. Coeckelbergh M (2010) Robot rights? Towards a social-relational justification of moral consideration. Ethics Inf Technol 12(3):209–221.  https://doi.org/10.1007/s10676-010-9235-5 CrossRefGoogle Scholar
  31. Colbert D (2011) The New Bible cure for stress: ancient truths, natural remedies, and the latest findings for your health today, revised and expanded edition. Siloam, Lake Mary, FLGoogle Scholar
  32. Colquitt JA, Conlon DE, Wesson MJ, Porter COLH, Yee Ng K (2001) Justice at the millennium: a meta-analytic review of 25 years of organizational justice research. J Appl Psychol 86(3):425–445CrossRefGoogle Scholar
  33. Colquitt JA, Scott BA, Rodell JB, Long DM, Zapata CP, Conlon DE, Wesson MJ (2013) Justice at the millennium, a decade later: a meta-analytic test of social exchange and affect-based perspectives. J Appl Psychol 98(2):199–236.  https://doi.org/10.1037/a0031757 CrossRefGoogle Scholar
  34. Cranor LF (2006) What do they “indicate?”: Evaluating security and privacy indicators. Interactions 13(3):45–47.  https://doi.org/10.1145/1125864.1125890 CrossRefGoogle Scholar
  35. Datta A, Sen S, Zick Y (2016) Algorithmic transparency via quantitative input influence: theory and experiments with learning systems. In: Proceedings of 2016 IEEE Symposium on Security and Privacy (SP), IEEE, pp. 598–617.  https://doi.org/10.1109/SP.2016.42.
  36. De Hert P, Gutwirth S (2006) Privacy, data protection and law enforcement, opacity of the individuals and transparency of power. In: Claes E, Duff A, Gutwirth S (eds) Privacy and the criminal law. Intersentia, Antwerp, pp 61–104Google Scholar
  37. Deighan C, Michalova L, Pagliari C, Elliott J, Taylor L, Ranaldi H (2017) The digital heart manual: a pilot study of an innovative cardiac rehabilitation programme developed for and with users. Patient Educ Couns 100(8):1598–1607.  https://doi.org/10.1016/j.pec.2017.03.014 CrossRefGoogle Scholar
  38. Diaz C, Tene O, Gürses S (2013) Hero or villain: the data controller in privacy law and technologies. Ohio State Law J 74(6):923–964Google Scholar
  39. Dodge M, Kitchin R (2007) “Outlines of a world coming into existence”: pervasive computing and the ethics of forgetting. Environ Plan B Plann Des 34(3):431–445.  https://doi.org/10.1068/b32041t CrossRefGoogle Scholar
  40. Doyle D, Tsymbal A, Cunningham P (2003) A review of explanation and explanation in case-based reasoning, Research paper TCD-CS-2003-41. Trinity College Dublin, Dublin, http://www.tara.tcd.ie/handle/2262/12919
  41. Edelstein M, McCloskey B (2016) Zika is not the New Ebola. Chatham House, London. https://www.chathamhouse.org/expert/comment/zika-not-new-ebola# Google Scholar
  42. Egelman S, Felt AP, Wagner D (2013) Choice architecture and smartphone privacy: there’s a price for that. In: Böhme R (ed) The economics of information security and privacy. Springer, Berlin, pp 211–236.  https://doi.org/10.1007/978-3-642-39498-0_10 CrossRefGoogle Scholar
  43. Ekbia HR, Nardi BA (2017) Heteromation: and other stories of computing and capitalism. MIT Press, Cambridge, MACrossRefGoogle Scholar
  44. Elgar FJ, Roberts C, Tudor-Smith C, Moore L (2005) Validity of self-reported height and weight and predictors of bias in adolescents. J Adolesc Health 37(5):371–375.  https://doi.org/10.1016/j.jadohealth.2004.07.014 CrossRefGoogle Scholar
  45. Elgesem D (2002) What is special about the ethical issues in online research? Ethic Inform Technol 4(3):195–203.  https://doi.org/10.1023/A:1021320510186 CrossRefGoogle Scholar
  46. Emanuel EJ, Emanuel LL (1998) The promise of a good death. Lancet 351(special issue):SII21–SII29.  https://doi.org/10.1016/S0140-6736(98)90329-4 CrossRefGoogle Scholar
  47. Enarsson T, Lindgren S (2018) Free speech or hate speech? A legal analysis of the discourse about Roma on Twitter, Information & Communications Technology Law.  https://doi.org/10.1080/13600834.2018.1494415 CrossRefGoogle Scholar
  48. Engesser S (2014) Towards a classification of participatory news websites: comparing heuristic and empirical types. Digital Journalism 2(4):575–595CrossRefGoogle Scholar
  49. Etzioni A (1999) The limits of privacy. Basic Books, New YorkGoogle Scholar
  50. Eysenbach G (2009) Infodemiology and infoveillance: framework for an emerging set of public health informatics methods to analyze search, communication and publication behavior on the Internet. J Med Internet Res 11(1):e11.  https://doi.org/10.2196/jmir.1157 CrossRefGoogle Scholar
  51. Felt AP, Ha E, Egelman S, Haney A, Chin E, Wagner D (2012) Android permissions: user attention, comprehension, and behavior. In: Proceedings of the Eighth Symposium on Usable Privacy and Security (SOUPS ’12). ACM, New York, p 3.  https://doi.org/10.1145/2335356.2335360 CrossRefGoogle Scholar
  52. Feyisetan O, Simperl E (2017) Social incentives in paid collaborative crowdsourcing. ACM Trans Intell Syst Technol 8(6):73.  https://doi.org/10.1145/3078852 CrossRefGoogle Scholar
  53. Frankfurt HG (2005) On Bullshit. Princeton University Press, PrincetonGoogle Scholar
  54. Friend C, Singer JB (2007) Online journalism ethics: traditions and transitions. Taylor & Francis, LondonGoogle Scholar
  55. Fuster GG (2010) Inaccuracy as a privacy-enhancing tool. Ethics Inf Technol 12(1):87–95.  https://doi.org/10.1007/s10676-009-9212-z CrossRefGoogle Scholar
  56. Gelber K, McNamara L (2016) Evidencing the harms of hate speech, social identities. J Study Race Nation Culture 22(3):324–341.  https://doi.org/10.1080/13504630.2015.1128810 CrossRefGoogle Scholar
  57. Goodman B, Flaxman S (2017) European Union regulations on algorithmic decision-making and a “right to explanation”. AI Mag 38(3).  https://doi.org/10.1609/aimag.v38i3.2741 CrossRefGoogle Scholar
  58. Hancock J, Birnholtz J, Bazarova N, Guillory J, Perlin J, Amos B (2009) Butler lies: awareness, deception and design. In: Proceedings of the SIGCHI conference on human factors in computing systems (CHI ’09). ACM, New York, pp 517–526.  https://doi.org/10.1145/1518701.1518782 CrossRefGoogle Scholar
  59. Handschke V, Manataki A, Alexandru CA, Papapanagiotou P, Deighan C, Taylor L, Robertson D (2017) Designing a social machine for the heart manual service. In: van den Broek EL, Fred A, Gamboa H, Vaz M (eds.), Proceedings of the 10th international joint conference on biomedical engineering systems and technologies. vol. 5: HEALTHINF, pp. 435–440.  https://doi.org/10.5220/0006249004350440
  60. Hanley J, Fairbrother P, McCloughan L, Pagliari C, Paterson M, Pinnock H, Sheikh A, Wild S, McKinstry B (2015) Qualitative study of telemonitoring of blood glucose and blood pressure in type 2 diabetes. BMJ Open 5(12).  https://doi.org/10.1136/bmjopen-2015-008896 CrossRefGoogle Scholar
  61. Holeman I, Cookson TP, Pagliari C (2016) Digital technology for health sector governance in low and middle income countries: a scoping review. J Glob Health 6(2).  https://doi.org/10.7189/jogh.06.020408
  62. Hunt M, Auriemma J, Cashaw ACA (2003) Self-report bias and underreporting of depression on the BDI-II. J Pers Assess 80(1):26–30.  https://doi.org/10.1207/S15327752JPA8001_10 CrossRefGoogle Scholar
  63. Ibáñez L-D, O’Hara K, Simperl E (2018) On blockchains and the general data protection regulation. https://eprints.soton.ac.uk/422879/
  64. Karamouzian M, Kategekimana C (2015) Ebola treatment and prevention are not the only battles: understanding Ebola-related fear and stigma. Int J Health Policy Manag 4(1):55–56.  https://doi.org/10.15171/ijhpm.2014.128 CrossRefGoogle Scholar
  65. Kelley PG, Bresee J, Cranor LF, Reeder RW (2009) A “nutrition label” for privacy. In: Proceedings of the 5th Symposium on Usable Privacy and Security (SOUPS ’09). ACM, New York, p 4.  https://doi.org/10.1145/1572532.1572538 CrossRefGoogle Scholar
  66. Kimotho SG, Nyaga RN (2016) Digitized ethnic hate speech: understanding effects of digital media hate speech on citizen journalism in Kenya. Adv Lang Lit Studies 7(3):189–200Google Scholar
  67. Kind-Kovács F, Labov J (eds) (2013) Samizdat, Tamizdat and beyond: transnational media during and after socialism. Berghahn, New YorkGoogle Scholar
  68. Kitchin R (2014a) The data revolution: big data, open data, data infrastructures and their consequences. Sage, LondonGoogle Scholar
  69. Kitchin R (2014b) The real-time city? Big data and smart urbanism. Geol J 79(1):1–14.  https://doi.org/10.1007/s10708-013-9516-8 CrossRefGoogle Scholar
  70. Lanctôt G (1995) The medical mafia: how to get out of it alive and take back our health and wealth. Bridge of Love, CanadaGoogle Scholar
  71. Lee SH, Nurmatov UB, Nwaru BI, Mukherjee M, Grant L, Pagliari C (2016) Effectiveness of mHealth interventions for maternal, newborn and child health in low- and middle-income countries: systematic review and meta–analysis. J Glob Health 6(1):010401.  https://doi.org/10.7189/jogh.06.010401 CrossRefGoogle Scholar
  72. Levy D (2009) The ethical treatment of artificially conscious robots. Int J Soc Robot 1(3):209–216.  https://doi.org/10.1007/s12369-009-0022-6 CrossRefGoogle Scholar
  73. Liccardi I, Pato J, Weitzner DJ, Abelson H, De Roure D (2014) No technical understanding required: helping users make informed choices about access to their personal data. In: Proceedings of the 11th international conference on mobile and ubiquitous systems: computing, networking and services. ACM, New York, pp 140–150.  https://doi.org/10.4108/icst.mobiquitous.2014.258066 CrossRefGoogle Scholar
  74. Lim BY, Dey AK, Avrahami D (2009) Why and why not explanations improve the intelligibility of context-aware intelligent systems. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’09). ACM, New York, pp 2119–2128.  https://doi.org/10.1145/1518701.1519023 CrossRefGoogle Scholar
  75. Lipton ZC (2016) The mythos of model intepretability. https://arxiv.org/abs/1606.03490v3
  76. Lipton ZC (2017) The doctor just won’t accept that! https://arxiv.org/abs/1711.08037v2
  77. Manataki A, Fleuriot J, Papapanagiotou P (2016) A workflow-driven, formal methods approach to the generation of structured checklists for intra-hospital patient transfers. J Biomed Health Inform 21(4):1156–1162.  https://doi.org/10.1109/JBHI.2016.2579881 CrossRefGoogle Scholar
  78. Marx GT (2003) A tack in the shoe: neutralizing and resisting the new surveillance. J Soc Issues 59(2):369–390.  https://doi.org/10.1111/1540-4560.00069 MathSciNetCrossRefGoogle Scholar
  79. Mayer-Schönberger V (2009) Delete: the virtue of forgetting in the digital age. Princeton University Press, PrincetonGoogle Scholar
  80. Mayer-Schönberger V, Cukier K (2013) Big data: a revolution that will transform how we live, work and think. John Murray, LondonGoogle Scholar
  81. Meadows M (2013) Putting the citizen back into journalism. Journalism 14(1):43–60.  https://doi.org/10.1177/1464884912442293 CrossRefGoogle Scholar
  82. Merchant A, Jha T, Singh N (2016) The use of trust in social machines. In: Proceedings of the 25th international conference on World Wide Web. ACM, New York, pp 787–792.  https://doi.org/10.1145/2872518.2890597 CrossRefGoogle Scholar
  83. Murray-Rust D (2018) Social machines for all. In: Proceedings of autonomous agents and multi-agent systems 2018. pp. 1208–1212. http://ifaamas.org/Proceedings/aamas2018/pdfs/p1208.pdf
  84. Murray-Rust D, Van Kleek M, Drăgan L, Shadbolt N (2014b) Social palimpsests: clouding the lens of the personal panopticon. In: O’Hara K, Caroline Nguyen M-H, Haynes P (eds) Digital enlightenment yearbook 2014: social networks and social machines, surveillance and empowerment. IOS Press, Amsterdam, pp 75–98Google Scholar
  85. Murray-Rust D, O’Hara K, Oswald M, Van Kleek M, Shadbolt N (2015a) Privacy by obfuscation with personal data management architectures: possibilities and constraints. Presented at the Workshop on the Economics of Surveillance, ACM Web Science Conference. https://eprints.soton.ac.uk/378625/
  86. Nissenbaum H (2010) Privacy in context: technology, policy and the integrity of social life. Stanford University Press, StanfordGoogle Scholar
  87. Nivette AE (2016) Institutional ineffectiveness, illegitimacy, and public support for vigilantism in Latin America. Criminologist 54(1):142–175.  https://doi.org/10.1111/1745-9125.12099 CrossRefGoogle Scholar
  88. O’Hara K (2004) Trust: from socrates to spin. Icon Books, DuxfordGoogle Scholar
  89. O’Hara K (2005) The ethics of cyber trust. In: Mansell R, Collins BS (eds) Trust and crime in information societies. Edward Elgar, Cheltenham, pp 442–449Google Scholar
  90. O’Hara K (2012b) Trust in social machines: the challenges. Presented at AISB/IACAP World Congress 2012: Social Computing, Social Cognition, Social Networks and Multiagent Systems (SOCIAL TURN/SNAMAS). https://eprints.soton.ac.uk/339703/
  91. O’Hara K (2012c) Can semantic web technology help implement a right to be forgotten? Computers and Law 22(6). https://www.scl.org/articles/2324-can-semantic-web-technology-help-implement-a-right-to-be-forgotten
  92. O’Hara K (2012f). A general definition of trust. https://eprints.soton.ac.uk/341800/
  93. O’Hara K (2013b) Are we getting privacy the wrong way round? IEEE Internet Comput 17(4):89–92.  https://doi.org/10.1109/MIC.2013.62 CrossRefGoogle Scholar
  94. O’Hara K (2015) The right to be forgotten: the good, the bad, and the ugly. IEEE Internet Comput 19(4):73–79.  https://doi.org/10.1109/MIC.2015.88 CrossRefGoogle Scholar
  95. O’Hara K (2016) The seven veils of privacy. IEEE Internet Comput 20(2):86–91.  https://doi.org/10.1109/MIC.2016.34 CrossRefGoogle Scholar
  96. O’Hara K (2017) Smart contracts—dumb idea. IEEE Internet Comput 21(2):97–101.  https://doi.org/10.1109/MIC.2017.48 CrossRefGoogle Scholar
  97. O’Hara K (2018c) Bullshit 2.0, discussion paper, University of Southampton. https://eprints.soton.ac.uk/423397/
  98. O’Hara K, Robertson D (2017) Social machines as an approach to group privacy. In: Taylor L, Floridi L, van der Sloot B (eds) Group privacy: new challenges of data technologies. Springer, Cham, pp 101–122.  https://doi.org/10.1007/978-3-319-46608-8_6 CrossRefGoogle Scholar
  99. O’Hara K, Shadbolt N (2015) The right to be forgotten: its potential role in a coherent privacy regime. Eur Data Protect Law Rev 1(3):178–189.  https://doi.org/10.21552/EDPL/2015/3/5 CrossRefGoogle Scholar
  100. O’Hara K, Tuffield M, Shadbolt N (2008) Lifelogging: privacy and empowerment with memories for life. Ident Informat Soc 1(1):155–172.  https://doi.org/10.1007/s12394-009-0008-4 CrossRefGoogle Scholar
  101. O’Hara K, Contractor NS, Hall W, Hendler JA, Shadbolt N (2013) Web Science: understanding the emergence of macro-level features on the World Wide Web. Found Trends Web Sci 4(2–3):103–267CrossRefGoogle Scholar
  102. O’Hara K, Shadbolt N, Hall W (2016) A pragmatic approach to the right to be forgotten, Global Commission on Internet Governance, Paper Series no.26, https://www.cigionline.org/publications/pragmatic-approach-right-be-forgotten
  103. O’Neil C (2016) Weapons of math destruction: how big data increases inequality and threatens democracy. Allen Lane, LondonzbMATHGoogle Scholar
  104. Packer HS, Buzogany G, Smith DA, Drăgan L, Van Kleek M, Shadbolt N (2014a) The editable self: a workbench for personal activity data. In: CHI ‘14 extended abstracts on human factors in computing systems. ACM, New York, pp 2185–2190.  https://doi.org/10.1145/2559206.2581283 CrossRefGoogle Scholar
  105. Pagliari C (2015) Value of personal health records for patients, citizens & science. https://www.linkedin.com/pulse/thinking-holistically-value-personal-health-records-claudia-pagliari/
  106. Pagliari C (2016) Digital support for childbirth in developing countries: seeds of hope in an evidential desert. JAMA Pediatr 170(8):737–739.  https://doi.org/10.1001/jamapediatrics.2016.1010 CrossRefGoogle Scholar
  107. Pagliari C, Vijaykumar S (2016) Digital Participatory Surveillance and the Zika crisis: opportunities and caveats. PLoS Negl Trop Dis 10(6).  https://doi.org/10.1371/journal.pntd.0004795 CrossRefGoogle Scholar
  108. Papapanagiotou P, Fleuriot JD (2014) Formal verification of collaboration patterns in healthcare. Behav Inform Technol 33(12):1278–1293.  https://doi.org/10.1080/0144929X.2013.824506 CrossRefGoogle Scholar
  109. Pedreschi D, Giannotti F, Guidotti R, Monreale A, Pappalardo L, Ruggieri S, Turini F (2018) Open the black box data-driven explanation of black box decision systems. https://arxiv.org/abs/1806.09936v1
  110. Raab CD (2005) The future of privacy protection. In: Mansell R, Collins BS (eds) Trust and crime in information societies. Edward Elgar, Cheltenham, pp 282–318Google Scholar
  111. Razaghpanah A, Nithyanand R, Vallina-Rodriguez N, Sundaresan S, Allman M, Kreibich C, Gill P (2018) Apps, trackers, privacy and regulators: a global study of the mobile tracking ecosystem. Presented at Network and Distributed System Security Symposium (NDSS) 2018. http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_05B-3_Razaghpanah_paper.pdf
  112. Ren J, Rao A, Lindorfer M, Legout A, Choffnes D (2016) ReCon: revealing and controlling PII leaks in mobile network traffic. https://arxiv.org/abs/1507.00255v3
  113. Robertson D (2004) A lightweight coordination calculus for agent systems. In: Leite J, Omicini A, Torroni P, Yolum P (eds) Declarative Agent Languages and Technologies II. DALT 2004. Springer-Verlag, Berlin, Heidelberg, pp 183–197.  https://doi.org/10.1007/11493402_11 CrossRefGoogle Scholar
  114. Robertson D, Giunchiglia F (2013) Programming the social computer. Philos Trans R Soc A 371(1987):20120379.  https://doi.org/10.1098/rsta.2012.0379 MathSciNetzbMATHCrossRefGoogle Scholar
  115. Robertson D, Giunchiglia F, Pavis S, Turra E, Bella G, Elliot E, Morris A, Atkinson M, McAllister G, Manataki A, Papapanagiotou P, Parsons M (2016) Healthcare data safe havens: towards a logical architecture and experiment automation. J Eng Des 2016(11):431–440.  https://doi.org/10.1049/joe.2016.0170 CrossRefGoogle Scholar
  116. Rose JL (2016) Freedom of association and the temporal coordination problem. J Polit Philos 24(3):261–276.  https://doi.org/10.1111/jopp.12098 CrossRefGoogle Scholar
  117. Samek W, Binder A, Montavon G, Lapuschkin S, Müller K-R (2016) Evaluating the visualization of what a deep neural network has learned. IEEE Trans Neural Netw Learn Syst 28(11):2660–2673.  https://doi.org/10.1109/TNNLS.2016.2599820 MathSciNetCrossRefGoogle Scholar
  118. Shadbolt N, Smith DA, Simperl E, Van Kleek M, Yang Y, Hall W (2013) Towards a classification framework for social machines. In: Proceedings of the 22nd international conference on World Wide Web (WWW ’13). ACM, New York, pp 905–912.  https://doi.org/10.1145/2487788.2488078 CrossRefGoogle Scholar
  119. Shklovski I, Mainwaring SD, Skúladóttir HH, Borgthorsson H (2014) Leakiness and creepiness in app space: perceptions of privacy and mobile app use. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’14). ACM, New York, pp 2347–2356.  https://doi.org/10.1145/2556288.2557421 CrossRefGoogle Scholar
  120. Simonsen J, Robertson T (eds) (2013) Routledge international handbook of participatory design. Routledge, New YorkGoogle Scholar
  121. Smart P, Simperl E, Shadbolt N (2014) A taxonomic framework for social machines. In: Miorandi D, Maltese V, Rovatsos M, Nijholt A, Stewart J (eds) Social collective intelligence: combining the powers of humans and machines to build a smarter society. Springer, Cham, pp 51–85.  https://doi.org/10.1007/978-3-319-08681-1_3 CrossRefGoogle Scholar
  122. Smith DA, Van Kleek M, Shadbolt N (2013) Using personal activity diaries to enhance electronic health records. Presented at ACM CHI 2013 Workshop on Patient-Clinician Communication. https://eprints.soton.ac.uk/348234/
  123. Stevens D, O’Hara K (2015) The devil’s long tail: religious and other radicals in the internet marketplace. Hurst, LondonGoogle Scholar
  124. Taylor J, Pagliari C (2018a) Mining social media data: how are research sponsors and researchers addressing the ethical challenges? Res Ethics 14(2):1–39.  https://doi.org/10.1177/1747016117738559 CrossRefGoogle Scholar
  125. Taylor J, Pagliari C (2018b) #Deathbedlive: the end-of-life trajectory, reflected in a cancer patient’s tweets. BMC Palliat Care 17:17.  https://doi.org/10.1186/s12904-018-0273-9 CrossRefGoogle Scholar
  126. Trottier D (2017) Digital vigilantism as weaponisation of visibility. Philos Technol 30(1):55–72.  https://doi.org/10.1007/s13347-016-0216-4 CrossRefGoogle Scholar
  127. Tursunbayeva A, Franco M, Pagliari C (2017) Use of social media for e-government in the public health sector: a systematic review of published studies. Gov Inf Q 34(2):270–282.  https://doi.org/10.1016/j.giq.2017.04.001 CrossRefGoogle Scholar
  128. Van House NA (2011) Feminist HCI meets Facebook: performativity and social networking sites. Interact Comput 23(5):422–429.  https://doi.org/10.1016/j.intcom.2011.03.003 CrossRefGoogle Scholar
  129. Van Kleek M, O’Hara K (2014) The future of social is personal: the potential of the Personal Data Store. In: Miorandi D, Maltese V, Rovatsos M, Nijholt A, Stewart J (eds) Social collective intelligence: combining the powers of humans and machines to build a smarter society. Springer, Cham, pp 125–158.  https://doi.org/10.1007/978-3-319-08681-1_7 CrossRefGoogle Scholar
  130. Van Kleek M, Smith DA, Hall W, Shadbolt N (2013) “The crowd keeps me in shape”: social psychology and the present and future of health social machines. In: Proceedings of the 22nd International Conference on World Wide Web (WWW ’13). ACM, New York, pp 927–932.  https://doi.org/10.1145/2487788.2488082 CrossRefGoogle Scholar
  131. Van Kleek M, Murray-Rust D, Guy A, Smith DA, Shadbolt N (2015) Self-curation, social partitioning, escaping from prejudice and harassment: the many dimensions of lying online. In: Proceedings of the 24th International Conference on World Wide Web (WWW ’15). ACM, New York, pp 371–372.  https://doi.org/10.1145/2740908.2745940 CrossRefGoogle Scholar
  132. Van Kleek M, Murray-Rust D, Guy A, O’Hara K, Shadbolt N (2016) Computationally mediated pro-social deception. In: Proceedings of the 2016 CHI conference on human factors in computing systems. ACM, New York, pp 552–563.  https://doi.org/10.1145/2858036.2858060 CrossRefGoogle Scholar
  133. Van Kleek M, Liccardi I, Binns R, Zhao J, Weitzner DJ, Shadbolt N (2017) Better the devil you know: exposing the data sharing practices of smartphone apps. In: Proceedings of the 2017 CHI conference on human factors in computing systems. ACM, New York, pp 5208–5220.  https://doi.org/10.1145/3025453.3025556 CrossRefGoogle Scholar
  134. Van Kleek M, Binns R, Zhao J, Slack A, Lee S, Ottewell D, Shadbolt N (2018) X-Ray Refine: supporting the exploration and refinement of information exposure resulting from smartphone apps. In: Proceedings of the 2018 CHI conference on human factors in computing systems. ACM, New York.  https://doi.org/10.1145/3173574.3173967 CrossRefGoogle Scholar
  135. Vijaykumar S, Meurzec RW, Jayasundar K, Pagliari C, Fernandopulle Y (2017) What’s buzzing on your feed? Health authorities’ use of Facebook to combat Zika in Singapore. J Am Med Inform Assoc 24(6):1155–1159.  https://doi.org/10.1093/jamia/ocx028 CrossRefGoogle Scholar
  136. Wachter S, Mittelstadt B, Floridi L (2017) Why a right to explanation of automated decision-making does not exist in the General Data Protection Regulation. IDPL 7(2):76–99.  https://doi.org/10.1093/idpl/ipx005 CrossRefGoogle Scholar
  137. Watts C (2018) Messing with the enemy: surviving in a social media world of hackers, terrorists, Russians, and fake news. HarperCollins, New YorkGoogle Scholar
  138. West P, Giordano R, Van Kleek M, Shadbolt N (2016) The quantified patient in the doctor’s office: challenges & opportunities. In: Proceedings of the 2016 CHI conference on human factors in computing systems. ACM, New York, pp 3066–3078.  https://doi.org/10.1145/2858036.2858445 CrossRefGoogle Scholar
  139. Wierzbicki A (2010) Trust and fairness in open, distributed systems. Springer, BerlinCrossRefGoogle Scholar
  140. Woolley SC, Howard PN (2018) Computational propaganda: political parties, politicians, and political manipulation on social media. Oxford University Press, New YorkCrossRefGoogle Scholar
  141. Zang J, Dummit K, Graves J, Lisker P, Sweeney L (2015) Who knows what about me? A survey of behind the scenes personal data sharing to third parties by mobile apps. Technol Sci. https://techscience.org/a/2015103001/
  142. Zhao J, Binns R, Van Kleek M, Shadbolt N (2016) Privacy languages: are we there yet to enable user controls? In: Proceedings of the 25th international conference companion on World Wide Web. ACM, New York.  https://doi.org/10.1145/2872518.2890590 CrossRefGoogle Scholar
  143. Zwitter A (2014) Big data ethics. Big Data Soc 1(2):1–6.  https://doi.org/10.1177/2053951714559253 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nigel Shadbolt
    • 1
  • Kieron O’Hara
    • 2
  • David De Roure
    • 3
  • Wendy Hall
    • 2
  1. 1.Department of Computer ScienceUniversity of OxfordOxfordUK
  2. 2.Electronics and Computer ScienceUniversity of SouthamptonSouthamptonUK
  3. 3.Oxford eResearch CentreUniversity of OxfordOxfordUK

Personalised recommendations