Advertisement

Practice

  • Nigel Shadbolt
  • Kieron O’Hara
  • David De Roure
  • Wendy Hall
Chapter
Part of the Lecture Notes in Social Networks book series (LNSN)

Abstract

This chapter examines how social machines work in practice, and how researchers can understand them and intervene them when appropriate. It begins with a discussion of how to gather the evidence about social machines, and introduces the idea of a distributed Web Observatory, looking at the specific example of the Southampton University Web Observatory (SUWO). Next the chapter looks at how to model crowds, and how crowds behave, considering the motivations, including social and financial incentives, for participating in social machines and more generally in crowdsourcing exercises, and how participants can be encouraged to engage, especially if they are deemed likely to disengage. The next section takes a deeper dive into the citizen science platform Zooniverse, and considers how the architecture is designed to promote flourishing social groups and productive sociality, creating value for both participants and scientists; some principles for citizen science platform design are set out. Finally, more examples of social machines in action are described, including social machines in mathematics, in politics and in music, before the chapter finishes with a further look at Wikipedia in the context of theories about the affordances of institutions for supporting creativity.

Keywords

Brexit Citizen science Clinton, Hillary Common-pool resources Computational social creativity CrowdFlower Crowdsourcing Disengagement Duolingo Eyewire Financial incentives Galaxy Zoo Incentives Mathematical social machines Mathematics Stack Exchange MathOverflow Motivation Music Information Retrieval (MIR) Musical social machines Obama, Barack Ostrom, Elinor Panoptes (Zooniverse) Political social machines Project builder (Zooniverse) Romney, Mitt Social flow Social incentives Southampton University Web Observatory (SUWO) Talk pages (Zooniverse) Trump, Donald Twitter Web Observatory Wikipedia WikiProjects Zooniverse 

References

  1. Abadi D, Madden S, Lindner W (2016) Sensor network integration with streaming database systems. In: Garofalakis M, Gehrke J, Rastogi R (eds) Data stream management: processing high-speed data streams. Springer, Berlin, pp 409–428.  https://doi.org/10.1007/978-3-540-28608-0_20 CrossRefGoogle Scholar
  2. Aberdein A (2007) The informal logic of mathematical proof. In: van Kerkhove B, van Bendegem JP (eds) Perspectives on mathematical practices: bringing together philosophy of mathematics, sociology of mathematics, and mathematics education. Springer, Dordrecht, pp 135–151.  https://doi.org/10.1007/1-4020-5034-8_8 CrossRefGoogle Scholar
  3. Adamic LA, Zhang J, Bakshy E, Ackerman MS (2008) Knowledge sharing and Yahoo! Answers: everyone knows something. In: Proceedings of the 17th international conference on World Wide Web (WWW ’08). ACM, New York, pp 665–674.  https://doi.org/10.1145/1367497.1367587 CrossRefGoogle Scholar
  4. von Ahn L (2013) Duolingo: learn a language for free while helping to translate the web. In: Proceedings of the 2013 International Conference on Intelligent User Interfaces (IUI ’13). ACM, New York, pp 1–2.  https://doi.org/10.1145/2449396.2449398 CrossRefGoogle Scholar
  5. von Ahn L, Dabbish L (2004) Labelling images with a computer game. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’04). ACM, New York, pp 319–326.  https://doi.org/10.1145/985692.985733 CrossRefGoogle Scholar
  6. Aparicio AF, Vela FLG, Sánchez JLG, Montes JLI (2012) Analysis and application of gamification. In: Proceedings of the 13th international conference on Interacción Persona-Ordenador (INTERACCION ’12). ACM, New York.  https://doi.org/10.1145/2379636.2379653 CrossRefGoogle Scholar
  7. Batson CD (2011) Empathy-induced altruism: friend or foe of the common good? In: Forsyth DR, Hoyt CL (eds) For the greater good of all. Palgrave Macmillan, New York, pp 29–47.  https://doi.org/10.1007/978-0-230-11626-9_3 CrossRefGoogle Scholar
  8. Batson CD, Ahmad N (2001) Empathy-induced altruism in a prisoner’s dilemma II: what if the target of empathy has defected? Eur J Soc Psychol 31(1):25–36. http://psycnet.apa.org/doi/10.1002/ejsp.26 CrossRefGoogle Scholar
  9. Bell D (1992) Distributed database systems. Addison-Wesley, HarlowzbMATHGoogle Scholar
  10. Berners-Lee T, Hall W, Hendler JA, O’Hara K, Shadbolt N, Weitzner DJ (2006) A framework for web science. Found Trends Web Sci 1(1):1–134CrossRefGoogle Scholar
  11. Bernstein MS, Little G, Miller RC, Hartmann B, Ackerman MS, Karger DR, Crowell D, Panovich K (2010) Soylent: a word processor with a crowd inside. In: Proceedings of the 23rd annual ACM symposium on User Interface Software and Technology (UIST ’10), pp. 313–322.  https://doi.org/10.1145/1866029.1866078
  12. Bimber B (2003) Information and American democracy: technology in the evolution of political power. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  13. Bimber B, Davis R (2003) Campaigning online: the internet in US elections. Oxford University Press, New YorkGoogle Scholar
  14. de Boer V, Hildebrand M, Aroyo L, De Leenheer P, Dijkshoorn C, Tesfa B, Schreiber G (2012) Nichesourcing: harnessing the power of crowds of experts. In: ten Teije A, Völker J, Handschuh S, Stuckenschmidt H, d’Acquin M, Nikolov A, Aussenac-Gilles N, Hernandez N (eds) Knowledge engineering and knowledge management: proceedings of the 18th International Conference, EKAW 2012. Springer, Berlin, pp 16–20.  https://doi.org/10.1007/978-3-642-33876-2_3 CrossRefGoogle Scholar
  15. Bond RM, Fariss CJ, Jones JJ, Kramer ADI, Marlow C, Settle JE, Fowler JH (2012) A 61-million-person experiment in social influence and political mobilization. Nature 489:295–298.  https://doi.org/10.1038/nature11421 CrossRefGoogle Scholar
  16. Bowser A, Hansen D, He Y, Boston C, Reid M, Gunnell L, Preece J (2013) Using gamification to inspire new citizen science volunteers. In: Proceedings of the 1st international conference on gameful design, research, and applications (Gamification ’13). ACM, New York, pp 18–25.  https://doi.org/10.1145/2583008.2583011 CrossRefGoogle Scholar
  17. Bowyer A, Lintott C, Hines G, Allen C, Paget E (2015) Panoptes, a project building tool for citizen science. In: Proceedings of the 3rd AAAI Conference on Human Computation and Crowdsourcing (HCOMP-15). http://www.humancomputation.com/2015/papers/49_Paper.pdf
  18. Brzozowski MJ, Sandholm T, Hogg T (2009) Effects of feedback and peer pressure on contributions to enterprise social media. In: Proceedings of the ACM 2009 international conference on supporting group work (GROUP ’09). ACM, New York, pp 61–70.  https://doi.org/10.1145/1531674.1531684 CrossRefGoogle Scholar
  19. Budzynska K, Janier M, Reed C, Saint-Dizier P, Stede M, Yakorska O (2014) A model for processing illocutionary structures and argumentation in debates. Presented at LREC 2014. https://www.semanticscholar.org/paper/A-Model-for-Processing-Illocutionary-Structures-and-Budzynska-Janier/e76c98cb4479d8ca0f4a04bfc07fcf5dc6b4d920
  20. Burgoyne JA, Fujinaga I, Stephen Downie J (2015) Music information retrieval. In: Schreibman S, Siemens R, Unsworth J (eds) A new companion to digital humanities. John Wiley, Chichester, pp 213–228.  https://doi.org/10.1002/9781118680605.ch15 CrossRefGoogle Scholar
  21. Butler B, Joyce E, Pike J (2008) Don’t look now, but we’ve created a bureaucracy: the nature and roles of policies and rules in Wikipedia. In: Proceedings of the SIGCHI conference on human factors in computing systems (CHI ’08). ACM, New York, pp 1101–1110.  https://doi.org/10.1145/1357054.1357227 CrossRefGoogle Scholar
  22. Canetti E (1962) Crowds and power. Victor Gollancz, LondonGoogle Scholar
  23. Cardamone C, Schawinski K, Sarzi M, Bamford SP, Bennert N, Urry CM, Lintott C, Keel WC, Parejko J, Nichol RC, Thomas D, Andreescu D, Murray P, Raddick MJ, Slosar A, Szalay A, VandenBerg J (2009) Galaxy Zoo green peas: discovery of a class of compact extremely star-forming galaxies. Mon Not R Astron Soc 399(3):1191–1205.  https://doi.org/10.1111/j.1365-2966.2009.15383.x CrossRefGoogle Scholar
  24. Carlisle JE, Patton RC (2013) Is social media changing how we understand political engagement? An analysis of Facebook and the 2008 Presidential Election. Polit Res Q 66(4):883–895.  https://doi.org/10.1177/1065912913482758 CrossRefGoogle Scholar
  25. Chamberlain J (2014) Groupsourcing: distributed problem solving using social networks. In: Proceedings of the second AAAI conference on human computation and crowdsourcing. https://www.aaai.org/ocs/index.php/HCOMP/HCOMP14/paper/viewFile/8973/8951
  26. Corneli J (2016) An institutional approach to computational social creativity. In: Pachet F, Cardoso A, Corruble V, Ghedini F (eds) Proceedings of the seventh international conference on computational creativity. International Association for Computational Creativity, Paris, pp 131–138, http://www.computationalcreativity.net/iccc2016/wp-content/uploads/2016/08/Proceedings_ICCC16.pdf
  27. Corneli J, Martin U, Murray-Rust D, Pease A (2017a) Towards mathematical AI via a model of the content and process of mathematical question and answer dialogues. In: Geuvers H, England M, Hasan O, Rabe F, Teschke O (eds) Proceedings of the 10th international Conference on Intelligent Computer Mathematics: CICM 2017. Springer, Cham, pp 132–146.  https://doi.org/10.1007/978-3-319-62075-6_10 CrossRefzbMATHGoogle Scholar
  28. Corneli J, Martin U, Murray-Rust D, Pease A, Puzio R, Nesin GR (2017b) Modelling the way mathematics is actually done. In: Proceedings of the 5th ACM SIGPLAN international workshop on Functional Art, Music, Modeling, and Design (FARM 2017). ACM, New York, pp 10–19.  https://doi.org/10.1145/3122938.3122942 CrossRefGoogle Scholar
  29. Corneli J, Martin U, Murray-Rust D, Nesin GR, Pease A (2018) Argumentation theory for mathematical argument. https://arxiv.org/abs/1803.06500v2
  30. Michael Cox, Gwen Arnold, Sergio Villamayor Tomás (2010). A review of design principles for community-based natural resource management, Ecol Soc, 15(4), 38. https://www.ecologyandsociety.org/vol15/iss4/art38/
  31. Danescu-Niculescu-Mizil C, West R, Jurafsky D, Leskovec J, Potts C (2013) No country for old members: user lifecycle and linguistic change in online communities. In: Proceedings of the 22nd international conference on World Wide Web (WWW ’13). ACM, New York, pp 307–318.  https://doi.org/10.1145/2488388.2488416 CrossRefGoogle Scholar
  32. Dawson R, Bynghall S (2012) Getting results from crowds: the definitive guide to using crowdsourcing to grow your business, 2nd edn. Advanced Human Technologies, San FranciscoGoogle Scholar
  33. Deci EL, Ryan RM (1985) Intrinsic motivation and self-determination in human behavior. Plenum, New YorkCrossRefGoogle Scholar
  34. Deterding S (2015) The lens of intrinsic skill atoms: a method for gameful design. HCI 30(3-4):294–335.  https://doi.org/10.1080/07370024.2014.993471 CrossRefGoogle Scholar
  35. Difallah DE, Demartini G, Cudre-Mauroux P (2012) Mechanical cheat: spamming schemes and adversarial techniques on crowdsourcing platforms. In: Proceedings of CrowdSearch 2012 workshop at WWW 2012. https://exascale.info/assets/pdf/Difallah_CrowdSearch_2012.pdf
  36. DiFranzo D, Erickson JS, Gloria MJKT, Luciano JS, McGuinness DL, Hendler J (2014) The web observatory extension: facilitating web science collaboration through semantic markup. In: Proceedings of the 23rd international conference on World Wide Web. ACM, New York, pp 475–480.  https://doi.org/10.1145/2567948.2576936 CrossRefGoogle Scholar
  37. Doan AH, Halevy A, Ives Z (2012) Principles of data integration. Morgan Kaufmann, Waltham, MAGoogle Scholar
  38. Dow S, Kulkarni A, Klemmer S, Hartmann B (2012) Shepherding the crowd yields better work. In: Proceedings of the ACM 2012 conference on Computer Supported Cooperative Work (CSCW ’12). ACM, New York, pp 1013–1022.  https://doi.org/10.1145/2145204.2145355 CrossRefGoogle Scholar
  39. Eveleigh A, Jennett C, Blandford A, Brohan P, Cox AL (2014) Designing for dabblers and deterring drop-outs in citizen science. In: Proceedings of the SIGCHI conference on human factors in computing systems (CHI ’14). ACM, New York, pp 2985–2994.  https://doi.org/10.1145/2556288.2557262 CrossRefGoogle Scholar
  40. Farič N, Potts HWW (2014) Motivations for contributing to health-related articles on Wikipedia: an interview study. J Med Internet Res 16(12):e260.  https://doi.org/10.2196/jmir.3569 CrossRefGoogle Scholar
  41. Ferrara E, Varol O, Davis C, Menczer F, Flammini A (2016) The rise of social bots. Commun ACM 59(7):96–104.  https://doi.org/10.1145/2818717 CrossRefGoogle Scholar
  42. Feyisetan O (2016) Addressing challenges in gamified paid microtask crowdsourcing using furtherance incentives. PhD thesis, University of SouthamptonGoogle Scholar
  43. Feyisetan O, Simperl E (2017) Social incentives in paid collaborative crowdsourcing. ACM Trans Intell Syst Technol 8(6):73.  https://doi.org/10.1145/3078852 CrossRefGoogle Scholar
  44. Feyisetan O, Simperl E, Van Kleek M, Shadbolt N (2015) Improving paid microtasks through gamification and adaptive furtherance incentives. In: Proceedings of the 24th international conference on World Wide Web (WWW ’15). ACM, New York, pp 333–343.  https://doi.org/10.1145/2736277.2741639 CrossRefGoogle Scholar
  45. Freitas A, Curry E, Oliveira JG, O’Riain S (2012) Querying heterogeneous datasets on the Linked Data Web: challenges, approaches, and trends. IEEE Internet Comput 16(1):24–33.  https://doi.org/10.1109/MIC.2011.141 CrossRefGoogle Scholar
  46. Gadiraju U, Kawase R, Dietze S (2014) A taxonomy of microtasks on the web. In: Proceedings of the 25th ACM conference on Hypertext and social media (HT ’14). ACM, New York, pp 218–223.  https://doi.org/10.1145/2631775.2631819 CrossRefGoogle Scholar
  47. Goasdoué F, Rousset M-C (2003) Querying distributed data through distributed ontologies: a simple but scalable approach. IEEE Intell Syst 18(5):60–65.  https://doi.org/10.1109/MIS.2003.1234771 CrossRefGoogle Scholar
  48. Halfaker A, Geiger RS, Morgan JT, Riedl J (2013) The rise and decline of an open collaboration system: how Wikipedia’s reaction to popularity is causing its decline. Am Behav Sci 57(5):664–688.  https://doi.org/10.1177/0002764212469365 CrossRefGoogle Scholar
  49. Hall W, Tinati R, Jennings W (2018) From brexit to trump: social media’s role in democracy. Computer 51(1):18–27.  https://doi.org/10.1109/MC.2018.1151005 CrossRefGoogle Scholar
  50. Harding L (2017) Collusion: how Russia helped Trump win the white house. Guardian Books/Faber, LondonGoogle Scholar
  51. Haythornthwaite C (2009) Crowds and communities: light and heavyweight models of peer production. In: Proceedings of the 42nd Hawaii International Conference on System Sciences (HICSS ’09).  https://doi.org/10.1109/HICSS.2009.137
  52. Hilliard C (2006) Using structured reflection on a critical incident to develop a professional portfolio. Nurs Stand 21(2):35–40.  https://doi.org/10.7748/ns2006.09.21.2.35.c4500 CrossRefGoogle Scholar
  53. Hindman M (2009) The myth of digital democracy. Princeton University Press, Princeton, NJGoogle Scholar
  54. Huang S-W, Fu W-T (2013) Don’t hide in the crowd! Increasing social transparency between peer workers improves crowdsourcing outcomes. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’13). ACM, New York, pp 621–630.  https://doi.org/10.1145/2470654.2470743 CrossRefGoogle Scholar
  55. Irani LC, Six Silberman M (2013) Turkopticon: interrupting worker invisibility in Amazon Mechanical Turk. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’13). ACM, New York, pp 611–620.  https://doi.org/10.1145/2470654.2470742 CrossRefGoogle Scholar
  56. Jordanous A (2016) Four PPPPerspectives on computational creativity in theory and in practice. Connect Sci 28(2):194–216.  https://doi.org/10.1080/09540091.2016.1151860 CrossRefGoogle Scholar
  57. Jullien N, Crowston K, Ortega F (2015) The rise and fall of an online project: is bureaucracy killing efficiency in open knowledge production? In: Proceedings of the 11th International Symposium on Open Collaboration (OpenSym ’15). ACM, New York, p 13.  https://doi.org/10.1145/2788993.2789844 CrossRefGoogle Scholar
  58. Kandel E, Lazear EP (1992) Peer pressure and partnerships. J Polit Econ 100(4):801–817. https://www.jstor.org/stable/2138688 CrossRefGoogle Scholar
  59. Karger DR, Jones W (2006) Data unification in personal information management. Commun ACM 49(1):77–82.  https://doi.org/10.1145/1107458.1107496 CrossRefGoogle Scholar
  60. Nicolas Kaufmann, Thimo Schulze, Daniel Veit (2011) More than fun and money: worker motivation in crowdsourcing—a study on Mechanical Turk. In: Proceedings of the Seventeenth Americas Conference on Information Systems. https://schader.bwl.uni-mannheim.de/fileadmin/files/schader/files/publikationen/Kaufmann_Schulze_Veit_2011_-_More_than_fun_and_money_Worker_motivation_in_Crowdsourcing_-_A_Study_on_Mechanical_Turk_AMCIS_2011.pdf
  61. Kittur A, Chi EH, Pendleton BA, Suh B, Mytkowicz T (2007a) Power of the few vs. wisdom of the crowd: wikipedia and the rise of the bourgeoisie. World Wide Web 1(2). https://www.researchgate.net/publication/200772541_Power_of_the_Few_vs_Wisdom_of_the_Crowd_Wikipedia_and_the_Rise_of_the_Bourgeoisie
  62. Kittur A, Suh B, Pendleton BA, Chi EH (2007b) He says, she says: conflict and coordination in Wikipedia. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’07). ACM, New York, pp 453–462.  https://doi.org/10.1145/1240624.1240698 CrossRefGoogle Scholar
  63. Kraut RE, Resnick P, Kiesler S, Ren Y, Chen Y, Burke M, Kittur N, Riedl J, Konstan J (2012) Building successful online communities: evidence-based social design. MIT Press, Cambridge, MACrossRefGoogle Scholar
  64. Lakatos I (1976) Proofs and refutations: the logic of mathematical discovery. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  65. Laplante A, Fujinaga I (2016) Digitizing musical scores: challenges and opportunities for libraries. In: Proceedings of the 3rd international workshop on digital libraries for musicology. ACM, New York, pp 45–48.  https://doi.org/10.1145/2970044.2970055 CrossRefGoogle Scholar
  66. Latané B, Williams K, Harkins S (1979) Many hands make light the work: the causes and consequences of social loafing. J Pers Soc Psychol 37(6):822–832.  https://doi.org/10.1037/0022-3514.37.6.822 CrossRefGoogle Scholar
  67. Lenzerini M (2002) Data integration: a theoretical perspective. In: Proceedings of the 21st ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS ’02). ACM, New York, pp 233–246.  https://doi.org/10.1145/543613.543644 CrossRefGoogle Scholar
  68. Lintott C, Schawinski K, Keel W, van Arkel H, Bennert N, Edmondson E, Thomas D, Smith D, Herbert P, Jarvis M, Virani S, Andreescu D, Bamford S, Land K, Murray P, Nichol R, Raddick J, Slosar A, Szalay A, Vandenberg J (2009) Galaxy Zoo: ‘Hanny’s Voorwerp’, a quasar light echo? Mon Not R Astron Soc 399(1):129–140.  https://doi.org/10.1111/j.1365-2966.2009.15299.x CrossRefGoogle Scholar
  69. Luczak-Roesch M, Tinati R, Simperl E, Van Kleek M, Shadbolt N, Simpson R (2014) Why won’t aliens talk to us? Content and community dynamics in online citizen science. In: 8th International AAAI Conference on Weblogs and Social Media. https://www.aaai.org/ocs/index.php/ICWSM/ICWSM14/paper/download/8092/8136
  70. Maali F, Erickson J (2014) Data catalog vocabulary (DCAT), W3C. https://www.w3.org/TR/vocab-dcat/
  71. Malone TW, Laubacher R, Dellarocas C (2009) Harnessing crowds: mapping the genome of collective intelligence, MIT Sloan Research Paper No. 4732-09.  https://doi.org/10.2139/ssrn.1381502
  72. Mandel T, Liu Y-E, Levine S, Brunskill E, Popovic Z (2014) Offline policy evaluation across representations with applications to educational games. In: Proceedings of the 2014 international conference on Autonomous Agents and Multi-Agent Systems (AAMAS ’14). ACM, New York, pp 1077–1084Google Scholar
  73. Mao A, Kamar E, Horwitz E (2013) Why stop now? Predicting worker engagement in online crowdsourcing. In: Proceedings of first AAAI conference on human computation and crowdsourcing. AAAI Publications, Palo Alto, CA. https://www.aaai.org/ocs/index.php/HCOMP/HCOMP13/paper/view/7498 Google Scholar
  74. Margetts H, John P, Hale S, Yasseri T (2016) Political turbulence: how social media shape collective action. Princeton University Press, PrincetonGoogle Scholar
  75. Martin U, Pease A (2013a) What does mathoverflow tell us about the production of mathematics? https://arxiv.org/abs/1305.0904v1
  76. Martin U, Pease A (2013b) Mathematical practice, crowdsourcing, and social machines. https://arxiv.org/abs/1305.0900v1 Google Scholar
  77. Martin D, Hanrahan BV, O’Neill J, Gupta N (2014) Being a Turker. In: Proceedings of the 17th ACM conference on Computer Supported Cooperative Work & Social Computing (CSCW ’14). ACM, New York, pp 224–235.  https://doi.org/10.1145/2531602.2531663 CrossRefGoogle Scholar
  78. Mazzolini M, Maddison S (2003) Sage, guide or ghost? The effect of instructor intervention on student participation in online discussion forums. Comput Educ 40(3):237–253.  https://doi.org/10.1016/S0360-1315(02)00129-X CrossRefGoogle Scholar
  79. Mockros CA, Csikszentmihalyi M (1999/2014) The social construction of creative lives. In: Csikszentmihalyi M (ed) The systems model of creativity: the collected works of Mihaly Csikszentmihalyi. Springer, Dordrecht, pp 127–160.  https://doi.org/10.1007/978-94-017-9085-7_9 CrossRefGoogle Scholar
  80. Mohnen A, Pokorny K, Sliwka D (2008) Transparency, inequity aversion, and the dynamics of peer pressure in teams: theory and evidence. J Labor Econ 26(4):693–720.  https://doi.org/10.1086/591116 CrossRefGoogle Scholar
  81. Monahan GA (1982) State of the art—a survey of partially observable Markov decision processes: theory, models, and algorithms. Manag Sci 28(1):1–16.  https://doi.org/10.1287/mnsc.28.1.1 CrossRefzbMATHGoogle Scholar
  82. Morgan JT, Gilbert M, Zachry M, McDonald D (2013) A content analysis of WikiProject discussions: toward a typology of coordination language used by virtual teams. In: Proceedings of the 2013 conference on computer supported cooperative work (CSCW ‘13). ACM, New York, pp 231–234.  https://doi.org/10.1145/2441955.2442011 Google Scholar
  83. Mugar G, Østerlund C, Katie DVH, Crowston K, Jackson CB (2014) Planet hunters and seafloor explorers: legitimate peripheral participation through practice proxies in online citizen science. In: Proceedings of the 17th ACM conference on Computer Supported Cooperative Work & Social Computing (CSCW ’14). ACM, New York, pp 109–119.  https://doi.org/10.1145/2531602.2531721 CrossRefGoogle Scholar
  84. O’Hara K (2013a) Social machine politics are here to stay. IEEE Internet Comput 17(2):87–90.  https://doi.org/10.1109/MIC.2013.36 CrossRefGoogle Scholar
  85. O’Hara K, Contractor NS, Hall W, Hendler JA, Shadbolt N (2013) Web Science: understanding the emergence of macro-level features on the World Wide Web. Found Trends Web Sci 4(2–3):103–267CrossRefGoogle Scholar
  86. O’Neil C (2016) Weapons of math destruction: how big data increases inequality and threatens democracy. Allen Lane, LondonzbMATHGoogle Scholar
  87. Oleson D, Sorokin A, Laughlin G, Hester V, Le J, Biewald L (2011) Programmatic gold: targeted and scalable quality assurance in crowdsourcing. In: Proceedings of the 11th AAAI Conference on Human Computation (AAAIWS ’11-11). ACM, New York, pp 43–48Google Scholar
  88. Ostrom E (1990) Governing the commons: the evolution of institutions for collective action. Cambridge University Press, New YorkCrossRefGoogle Scholar
  89. Page KR, Fields B, De Roure D, Crawford T, Stephen Downie J (2012) Reuse, remix, repeat: the workflows of MIR. In: Proceedings of the 13th international society for music information retrieval conference. http://ismir2012.ismir.net/event/papers/409_ISMIR_2012.pdf
  90. Painter A, Wardle B (eds) (2001) Viral politics: communication in the new media age. Politico’s, LondonGoogle Scholar
  91. Park JS, Sandhu R, Ahn G-J (2001) Role-based access control on the web. ACM T Inf Syst Secur (TISSEC) 4(1):37–71.  https://doi.org/10.1145/383775.383777 CrossRefGoogle Scholar
  92. Phethean C, Simperl E, Tiropanis T, Tinati R, Hall W (2016) The role of data science in Web science. IEEE Intell Syst 31(3):102–107.  https://doi.org/10.1109/MIS.2016.54 CrossRefGoogle Scholar
  93. Przybylski AK, Murayama K, DeHaan CR, Gladwell V (2013) Motivational, emotional, and behavioral correlates of fear of missing out. Comput Hum Behav 29(4):1841–1848.  https://doi.org/10.1016/j.chb.2013.02.014 CrossRefGoogle Scholar
  94. Raddick MJ, Bracey G, Carney K, Gyuk G, Borne K, Wallin J, Jacoby S (2009) Citizen science: status and research directions for the coming decade, Astro2010: the astronomy and astrophysics decadal survey, Position papers, no. 46, http://www.academia.edu/download/30554144/raddick_citizen_science_epo.pdf
  95. Raddick MJ, Bracey G, Gay PL, Lintott CJ, Cardamone C, Murray P, Schawinski K, Szalay AS, Vandenberg J (2013) Galaxy Zoo: motivations of citizen scientists. Astron Educ Rev 12(1):41.  https://doi.org/10.3847/AER2011021
  96. Ranjan R (2014) Streaming big data processing in datacenter clouds. IEEE Cloud Comput 1(1):78–83.  https://doi.org/10.1109/MCC.2014.22 CrossRefGoogle Scholar
  97. Rapport FL, Maggs CJ (2002) Titmuss and the gift relationship: altruism revisited. J Adv Nurs 40(5):495–503.  https://doi.org/10.1046/j.1365-2648.2002.02406.x CrossRefGoogle Scholar
  98. Rhodes M (1961) An analysis of creativity. Phi Beta Kappan 42(7):305–310Google Scholar
  99. Rotman D, Preece J, Hammock J, Procita K, Hansen D, Parr C, Lewis D, Jacobs D (2012) Dynamic changes in motivation in collaborative citizen-science projects. In: Proceedings of the ACM 2012 conference on Computer Supported Cooperative Work (CSCW ’12). ACM, New York, pp 217–226.  https://doi.org/10.1145/2145204.2145238 CrossRefGoogle Scholar
  100. Safner R (2016) Institutional entrepreneurship, wikipedia, and the opportunity of the commons. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2564230
  101. Sakamoto M, Nakajima T, Alexandrova T (2012) Value-based design for gamifying daily activities. In: Herrlich M, Malaka R, Masuch M (eds) Proceedings of entertainment computing–ICEC 2012. Springer, Berlin, pp 421–424.  https://doi.org/10.1007/978-3-642-33542-6_43 CrossRefGoogle Scholar
  102. Saunders R, Bown O (2015) Computational social creativity. Art&Life 21(3):366–378.  https://doi.org/10.1162/ARTL_a_00177 CrossRefGoogle Scholar
  103. Segal A, Gal Y’a (K), Simpson RJ, Homsy V, Hartswood M, Page KR, Jirotka M (2015) Improving productivity in citizen science through controlled intervention. In: Proceedings of the 24th International Conference on World Wide Web (WWW ’15). ACM, New York, pp 331–337.  https://doi.org/10.1145/2740908.2743051 CrossRefGoogle Scholar
  104. Segal A, Gal Y’a (K), Kamar E, Horwitz E, Bowyer A, Miller G (2016) Intervention strategies for increasing engagement in crowdsourcing: platform, predictions, and experiments. In: Kambhampati S (ed) Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence. AAAI Press/International Joint Conferences on Artificial Intelligence, Palo Alto, http://www.ijcai.org/Proceedings/16/Papers/543.pdf Google Scholar
  105. Segal A, Gal K, Kamar E, Horvitz E, Miller G (2018) Optimizing interventions via offline policy evaluation: studies in citizen science. In: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence. AAAI Publications, Palo Alto, https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16917
  106. Shuttleworth S (2017) Life in the Zooniverse: working with citizen science. J Lit Sci 10(1):46–51Google Scholar
  107. Simões J, Redondo RD, Vilas AF (2013) A social gamification framework for a K-6 learning platform. Comput Hum Behav 29(2):345–353.  https://doi.org/10.1016/j.chb.2012.06.007 CrossRefGoogle Scholar
  108. Simperl E, Reeves N, Phethean C, Lynes T, Tinati R (2018) Is virtual citizen science a game? ACM Trans Soc Comput 1(2):6.  https://doi.org/10.1145/3209960 CrossRefGoogle Scholar
  109. Simpson R, Page KR, De Roure D (2014) Zooniverse: observing the world’s largest citizen science platform. In: Proceedings of the 23rd International Conference on the World Wide Web. ACM, New York, pp 1049–1054.  https://doi.org/10.1145/2567948.2579215 CrossRefGoogle Scholar
  110. Smart P (2018) Knowledge machines. Knowl Eng Rev 33:e11.  https://doi.org/10.1017/S0269888918000139 CrossRefGoogle Scholar
  111. Smart P, Simperl E, Shadbolt N (2014) A taxonomic framework for social machines. In: Miorandi D, Maltese V, Rovatsos M, Nijholt A, Stewart J (eds) Social collective intelligence: combining the powers of humans and machines to build a smarter society. Springer, Cham, pp 51–85.  https://doi.org/10.1007/978-3-319-08681-1_3 CrossRefGoogle Scholar
  112. Suh B, Convertino G, Ed HC, Pirolli P (2009) The singularity is not near: slowing growth of Wikipedia. In: Proceedings of the 5th International Symposium on Wikis and Open Collaboration (WikiSym’09). ACM, New York, p 8.  https://doi.org/10.1145/1641309.1641322 CrossRefGoogle Scholar
  113. Surowiecki J (2004) The wisdom of crowds: why the many are smarter than the few. Little, Brown, LondonGoogle Scholar
  114. Tarte S, Willcox P, Glaser H, De Roure D (2015) Archetypal narratives in social machines: approaching sociality through prosopography. In: Proceedings of the ACM web science conference 2015. ACM, New York, p 24.  https://doi.org/10.1145/2786451.2786471 CrossRefGoogle Scholar
  115. Tinati R, Luczak-Roesch M (2017) Wikipedia: a complex social machine, ACM Sigweb Newsletter, Winter 2017, article 6.  https://doi.org/10.1145/3027141.3027147
  116. Tinati R, Van Kleek M, Simperl E, Luczak-Roesch M, Simpson R, Shadbolt N (2015a) Designing for citizen data analysis: a cross-sectional case study of a multi-domain citizen science platform. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (CHI ’15). ACM, New York, pp 4069–4078.  https://doi.org/10.1145/2702123.2702420 CrossRefGoogle Scholar
  117. Tinati R, Wang X, Tiropanis T, Hall W (2015b) Building a real-time Web Observatory. IEEE Internet Comput 19(6):36–45.  https://doi.org/10.1109/MIC.2015.94 CrossRefGoogle Scholar
  118. Tinati R, Luczak-Roesch M, Simperl E, Hall W (2017a) An investigation of player motivations in Eyewire, a gamified citizen science project. Comput Hum Behav 73(C):527–540.  https://doi.org/10.1016/j.chb.2016.12.074 CrossRefGoogle Scholar
  119. Tiropanis T, Hall W, Shadbolt N, De Roure D, Contractor N, Hendler JA (2013) The web science observatory. IEEE Intell Syst 28(2):100–104.  https://doi.org/10.1109/MIS.2013.50 CrossRefGoogle Scholar
  120. Tiropanis T, Hall W, Hendler J, de Larrinaga C (2014) The web observatory: a middle layer for broad data. Big Data 2(3):129–133.  https://doi.org/10.1089/big.2014.0035 CrossRefGoogle Scholar
  121. Titmuss R (1970) The gift relationship: from human blood to social policy. Allen & Unwin, LondonGoogle Scholar
  122. Tur K (2017) Unbelievable: my front-row seat to the craziest campaign in American history. HarperCollins, New YorkGoogle Scholar
  123. Walker CJ (2010) Experiencing flow: is doing it together better than doing it alone? J Posit Psychol 5(1):3–11.  https://doi.org/10.1080/17439760903271116 CrossRefGoogle Scholar
  124. Walton D (1997) How can logic best be applied to arguments? Log J IGPL 5(4):603–614.  https://doi.org/10.1093/jigpal/5.4.603 MathSciNetCrossRefzbMATHGoogle Scholar
  125. Wang G, Gill K, Mohanlal M, Zheng H, Zhao BY (2013) Wisdom in the social crowd: an analysis of Quora. In: Proceedings of the 22nd International Conference on World Wide Web (WWW ’08). ACM, New York, pp 1341–1352.  https://doi.org/10.1145/2488388.2488506 CrossRefGoogle Scholar
  126. Wang J, Wang Y, Zhang D, Wang F, He Y, Ma L (2017) PSAllocator: multi-task allocation for participatory sensing with sensing capability constraints. In: Proceedings of the 2017 ACM Conference on Computer Supported Cooperative Work and Social Computing (CSCW ’17). ACM, New York, pp 1139–1151.  https://doi.org/10.1145/2998181.2998193 CrossRefGoogle Scholar
  127. Watson D, Floridi L (2018) Crowdsourced science: sociotechnical epistemology in the e-research paradigm. Synthese 195:741–764.  https://doi.org/10.1007/s11229-016-1238-2 MathSciNetCrossRefGoogle Scholar
  128. Weigl DM, Lewis D, Crawford T, Knopke I, Page KR (2017) On providing semantic alignment and unified access to music library metadata. Int J Digit Libr.  https://doi.org/10.1007/s00799-017-0223-9
  129. Wu E, Diao Y, Rizvi S (2006) High-performance complex event processing over streams. In: Proceedings of the 2006 ACM SIGMOD International Conference on Management of Data (SIGMOD ’06). ACM, New York, pp 407–418.  https://doi.org/10.1145/1142473.1142520 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nigel Shadbolt
    • 1
  • Kieron O’Hara
    • 2
  • David De Roure
    • 3
  • Wendy Hall
    • 2
  1. 1.Department of Computer ScienceUniversity of OxfordOxfordUK
  2. 2.Electronics and Computer ScienceUniversity of SouthamptonSouthamptonUK
  3. 3.Oxford eResearch CentreUniversity of OxfordOxfordUK

Personalised recommendations