Advertisement

Onefold and Twofold Ellis–Gohberg Inverse Problems for Scalar Wiener Class Functions

  • M. A. KaashoekEmail author
  • F. van Schagen
Chapter
Part of the Trends in Mathematics book series (TM)

Abstract

The theory of onefold and twofold Ellis-Gohberg inverse problems for Wiener functions on the real line is specified further for the scalar case. Assuming the left onefold problem or the right onefold problem to be solvable, a necessary and sufficient condition is given for the twofold problem to be solvable. In that case the left and the right onefold problem are both solvable, and the solutions are equal. An example shows that the latter is not always true, i.e., the left and the right onefold problem are solvable does not imply that the solutions are equal.

Keywords

Inverse problem for orthogonal functions Wiener algebra Toeplitz operator Hankel operator Rational functions Inner-outer factorization Realization 

References

  1. 1.
    A. Böttcher, B. Silbermann, Analysis of Toeplitz operators (Springer, Berlin, 2006)zbMATHGoogle Scholar
  2. 2.
    R.L. Ellis, I. Gohberg, Orthogonal systems related to infinite Hankel matrices. J. Funct. Anal. 109, 155–198 (1992)MathSciNetCrossRefGoogle Scholar
  3. 3.
    R.L. Ellis, I. Gohberg, Orthogonal Systems and Convolution Operators. Oper. Theory Adv. Appl., vol. 140 (Birkhäuser Verlag, Basel, 2003)Google Scholar
  4. 4.
    I. Gohberg, S. Goldberg, M.A. Kaashoek, Classes of Linear Operators, Volume I. Oper. Theory Adv. Appl., vol. 49 (Birkhäuser Verlag, Basel, 1990)Google Scholar
  5. 5.
    I. Gohberg, S. Goldberg, M.A. Kaashoek, Classes of Linear Operators, Volume II. Oper. Theory Adv. Appl., vol. 63 (Birkhäuser Verlag, Basel, 1993)Google Scholar
  6. 6.
    M.A. Kaashoek, F. van Schagen, Ellis-Gohberg identities for certain orthogonal functions II: Algebraic setting and asymmetric versions, West Memorial Issue. Proc. Math. Royal Irish Acad. 113A(2), 107–130 (2013)MathSciNetCrossRefGoogle Scholar
  7. 7.
    M.A. Kaashoek, F. van Schagen, The Ellis-Gohberg inverse problem for matrix-valued Wiener functions on the line. Oper. Matrices 10(4), 1009–1042 (2016)MathSciNetCrossRefGoogle Scholar
  8. 8.
    M.A. Kaashoek, F. van Schagen, Errata for The Ellis-Gohberg inverse problem for matrix-valued Wiener functions on the line. Oper. Matrices 12(4), 1199–1200 (2018)MathSciNetCrossRefGoogle Scholar
  9. 9.
    S. ter Horst, M.A. Kaashoek, F. van Schagen, The twofold Ellis-Gohberg inverse problem in an abstract setting and applications. Oper. Theory Adv. Appl., vol. 272, 189–246 (2019)MathSciNetGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MathematicsVrije Universiteit AmsterdamAmsterdamThe Netherlands

Personalised recommendations