Advertisement

Advances in Computational Methods for Phylogenetic Networks in the Presence of Hybridization

  • R. A. Leo Elworth
  • Huw A. Ogilvie
  • Jiafan Zhu
  • Luay NakhlehEmail author
Chapter
Part of the Computational Biology book series (COBO, volume 29)

Abstract

Phylogenetic networks extend phylogenetic trees to allow for modeling reticulate evolutionary processes such as hybridization. They take the shape of a rooted, directed, acyclic graph, and when parameterized with evolutionary parameters, such as divergence times and population sizes, they form a generative process of molecular sequence evolution. Early work on computational methods for phylogenetic network inference focused exclusively on reticulations and sought networks with the fewest number of reticulations to fit the data. As processes such as incomplete lineage sorting (ILS) could be at play concurrently with hybridization, work in the last decade has shifted to computational approaches for phylogenetic network inference in the presence of ILS. In such a short period, significant advances have been made on developing and implementing such computational approaches. In particular, parsimony, likelihood, and Bayesian methods have been devised for estimating phylogenetic networks and associated parameters using estimated gene trees as data. Use of those inference methods has been augmented with statistical tests for specific hypotheses of hybridization, like the D-statistic. Most recently, Bayesian approaches for inferring phylogenetic networks directly from sequence data were developed and implemented. In this chapter, we survey such advances and discuss model assumptions as well as methods’ strengths and limitations. We also discuss parallel efforts in the population genetics community aimed at inferring similar structures. Finally, we highlight major directions for future research in this area.

Keywords

Phylogenetic networks Hybridization Incomplete lineage sorting Multispecies coalescent Maximum parsimony Maximum likelihood Bayesian inference 

Notes

Acknowledgements

Luay Nakhleh started working on phylogenetic networks in 2002 in a close collaboration with Tandy Warnow, Bernard M. E. Moret, and C. Randal Linder. At the time, their focus was on phylogenetic networks in terms of displaying trees. This focus led to work on the inference of smallest phylogenetic networks that display a given set of trees, as well as on comparing networks in terms of their displayed trees. While the approaches pursued at the time were basic, they were foundational in terms of pursuing more sophisticated models and approaches by Nakhleh and his group. Therefore, we would like to acknowledge the role that Bernard played in the early days of (explicit) phylogenetic networks.

The authors would also like to acknowledge James Mallet, Craig Moritz, David Morrison, and Mike Steel for extensive discussions and detailed comments that helped us significantly improve this chapter. The authors thank Matthew Hahn and Kelley Harris for their discussion of the definition of phylogenetic invariant methods, and Dingqiao Wen for the results in Sect. 13.6.3.

This work was partially supported by NSF grants DBI-1355998, CCF-1302179, CCF-1514177, CCF-1800723, and DMS-1547433.

References

  1. 1.
    Abbott, R., Albach, D., Ansell, S., Arntzen, J., Baird, S., Bierne, N., Boughman, J., Brelsford, A., Buerkle, C., Buggs, R., Butlin, R.K., Dieckmann, U., Eroukhmanoff, F., Grill, A., Cahan, S.H., Hermansen, J.S., Hewitt, G., Hudson, A.G., Jiggins, C., Jones, J., Keller, B., Marczewski, T., Mallet, J., Martinez-Rodriguez, P., Möst, M., Mullen, S., Nichols, R., Nolte, A.W., Parisod, C., Pfennig, K., Rice, A.M., Ritchie, M.G., Seifert, B., Smadja, C.M., Stelkens, R., Szymura, J.M., Väinölä, R., Wolf, J.B.W., Zinner, D.: Hybridization and speciation. J. Evolut. Biol. 26(2), 229–246 (2013)CrossRefGoogle Scholar
  2. 2.
    Arnold, M.: Natural Hybridization and Evolution. Oxford University Press (1997)Google Scholar
  3. 3.
    Barton, N.: The role of hybridization in evolution. Mol. Ecol. 10(3), 551–568 (2001)CrossRefGoogle Scholar
  4. 4.
    Barton, N.H., Hewitt, G.M.: Analysis of hybrid zones. Ann. Rev. Ecol. Syst. 16(1), 113–148 (1985)CrossRefGoogle Scholar
  5. 5.
    Blischak, P.D., Chifman, J., Wolfe, A.D., Kubatko, L.S.: HyDe: a Python package for genome-scale hybridization detection. Syst. Biol. p. syy023 (2018)Google Scholar
  6. 6.
    Bonhomme, M., Cuartero, S., Blancher, A., Crouau-Roy, B.: Assessing natural introgression in 2 biomedical model species, the rhesus macaque (Macaca mulatta) and the long-tailed macaque (Macaca fascicularis). J. Heredity 100(2), 158–169 (2009)CrossRefGoogle Scholar
  7. 7.
    Bouchard-Côté, A., Sankararaman, S., Jordan, M.I.: Phylogenetic inference via sequential Monte Carlo. Syst. Biol. 61(4), 579–593 (2012). http://dx.doi.org/10.1093/sysbio/syr131CrossRefGoogle Scholar
  8. 8.
    Bouckaert, R., Heled, J., Khnert, D., Vaughan, T., Wu, C.H., Xie, D., Suchard, M.A., Rambaut, A., Drummond, A.J.: BEAST 2: a software platform for Bayesian evolutionary analysis. PLOS Comput. Biol. 10(4), 1–6 (2014). https://doi.org/10.1371/journal.pcbi.1003537CrossRefGoogle Scholar
  9. 9.
    Bryant, D., Moulton, V.: Neighbor-Net: An agglomerative method for the construction of phylogenetic networks. Mol. Biol. Evolut. 21(2), 255–265 (2004). http://dx.doi.org/10.1093/molbev/msh018CrossRefGoogle Scholar
  10. 10.
    Buckland, S.T., Burnham, K.P., Augustin, N.H.: Model selection: an integral part of inference. Biometrics 53(2), 603–618 (1997). http://www.jstor.org/stable/2533961zbMATHCrossRefGoogle Scholar
  11. 11.
    Cavalli-Sforza, L.L., Edwards, A.W.: Phylogenetic analysis: models and estimation procedures. Evolution 21(3), 550–570 (1967)CrossRefGoogle Scholar
  12. 12.
    Cavender, J.A., Felsenstein, J.: Invariants of phylogenies in a simple case with discrete states. J. Classification 4(1), 57–71 (1987)zbMATHCrossRefGoogle Scholar
  13. 13.
    Chatzou, M., Magis, C., Chang, J.M., Kemena, C., Bussotti, G., Erb, I., Notredame, C.: Multiple sequence alignment modeling: methods and applications. Brief. Bioinform. 17(6), 1009–1023 (2015)CrossRefGoogle Scholar
  14. 14.
    Chifman, J., Kubatko, L.: Quartet inference from SNP data under the coalescent model. Bioinformatics 30(23), 3317–3324 (2014). http://dx.doi.org/10.1093/bioinformatics/btu530CrossRefGoogle Scholar
  15. 15.
    Chor, B., Tuller, T.: Maximum likelihood of evolutionary trees is hard. In: Miyano, S., Mesirov, J., Kasif, S., Istrail, S., Pevzner, P., Waterman, M. (eds.), Research in Computational Molecular Biology. Lecture Notes in Computer Science, vol. 3500, pp. 995–995. Springer, Berlin/Heidelberg (2005)Google Scholar
  16. 16.
    Clark, A.G., Messer, P.W.: Conundrum of jumbled mosquito genomes. Science 347(6217), 27–28 (2015)CrossRefGoogle Scholar
  17. 17.
    Coop, G., Witonsky, D., Di Rienzo, A., Pritchard, J.K.: Using environmental correlations to identify loci underlying local adaptation. Genetics 185(4), 1411–1423 (2010)CrossRefGoogle Scholar
  18. 18.
    De Queiroz, K.: Species concepts and species delimitation. Syst. Biol. 56(6), 879–886 (2007).  https://doi.org/10.1080/10635150701701083CrossRefGoogle Scholar
  19. 19.
    Degnan, J.H., Rosenberg, N.A.: Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends Ecol. Evolut. 24(6), 332–340 (2009)CrossRefGoogle Scholar
  20. 20.
    Degnan, J.H., Salter, L.A.: Gene tree distributions under the coalescent process. Evolution 59, 24–37 (2005)CrossRefGoogle Scholar
  21. 21.
    Du, P., Nakhleh, L.: Species tree and reconciliation estimation under a duplication-loss-coalescence model. In: The 9th ACM Conference on Bioinformatics, Computational Biology, and Health Informatics (ACM-BCB), pp. 376–385. Association for Computing Machinery (ACM) (2018)Google Scholar
  22. 22.
    Durand, E.Y., Patterson, N., Reich, D., Slatkin, M.: Testing for ancient admixture between closely related populations. Mol. Biol. Evolut. 28(8), 2239–2252 (2011). http://mbe.oxfordjournals.org/content/28/8/2239.abstractCrossRefGoogle Scholar
  23. 23.
    Elgvin, T.O., Trier, C.N., Tørresen, O.K., Hagen, I.J., Lien, S., Nederbragt, A.J., Ravinet, M., Jensen, H., Sætre, G.P.: The genomic mosaicism of hybrid speciation. Sci. Adv. 3(6), e1602,996 (2017)CrossRefGoogle Scholar
  24. 24.
    Elworth, R.L., Allen, C., Benedict, T., Dulworth, P., Nakhleh, L.: ALPHA: a toolkit for automated local phylogenomic analyses. Bioinformatics 1, 3 (2018)Google Scholar
  25. 25.
    Elworth, R.L., Allen, C., Benedict, T., Dulworth, P., Nakhleh, L.: \({D}_{GEN}\): a test statistic for detection of general introgression scenarios. In: Proceedings of the 18th Workshop on Algorithms in Bioinformatics (WABI) (2018)Google Scholar
  26. 26.
    Felsenstein, J.: Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evolut. 17(6), 368–376 (1981)CrossRefGoogle Scholar
  27. 27.
    Felsenstein, J.: Inferring Phylogenies. Sinauer, Sunderland, MA (2004)Google Scholar
  28. 28.
    Fernández-Mazuecos, M., Mellers, G., Vigalondo, B., Sáez, L., Vargas, P., Glover, B.J.: Resolving recent plant radiations: power and robustness of genotyping-by-sequencing. Syst. Biol. 67(2), 250–268 (2018). http://dx.doi.org/10.1093/sysbio/syx062CrossRefGoogle Scholar
  29. 29.
    Folk, R.A., Soltis, P.S., Soltis, D.E., Guralnick, R.: New prospects in the detection and comparative analysis of hybridization in the tree of life. Am. J. Botany 105(3), 364–375 (2018)CrossRefGoogle Scholar
  30. 30.
    Fontaine, M.C., Pease, J.B., Steele, A., Waterhouse, R.M., Neafsey, D.E., Sharakhov, I.V., Jiang, X., Hall, A.B., Catteruccia, F., Kakani, E., Mitchell, S.N., Wu, Y.C., Smith, H.A., Love, R.R., Lawniczak, M.K., Slotman, M.A., Emrich, S.J., Hahn, M.W., Besansky, N.J.: Extensive introgression in a malaria vector species complex revealed by phylogenomics. Science 347(6217), 1258,524 (2015)CrossRefGoogle Scholar
  31. 31.
    Francis, A.R., Steel, M.: Which phylogenetic networks are merely trees with additional arcs? Syst. Biol. 64(5), 768–777 (2015)CrossRefGoogle Scholar
  32. 32.
    Gascuel, O.: Mathematics of Evolution and Phylogeny. Oxford University Press, Oxford (2005)Google Scholar
  33. 33.
    Gelman, A., Meng, X.L., Stern, H.: Posterior predictive assessment of model fitness via realized discrepancies. Statistica Sinica 6(4), 733–760 (1996). http://www.jstor.org/stable/24306036
  34. 34.
    Gernhard, T.: The conditioned reconstructed process. J. Theoret. Biol. 253(4), 769–778 (2008).  https://doi.org/10.1016/j.jtbi.2008.04.005MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Good, J.M.: Reduced representation methods for subgenomic enrichment and next-generation sequencing. In: Orgogozo, V., Rockman, M.V. (eds.) Molecular Methods for Evolutionary Genetics, pp. 85–103. Humana Press, Totowa, NJ (2011)Google Scholar
  36. 36.
    Green, P.J.: Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82(4), 711–732 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Green, R.E., Krause, J., Briggs, A.W., Maricic, T., Stenzel, U., Kircher, M., Patterson, N., Li, H., Zhai, W., Fritz, M.H.Y., Hansen, N.F., Durand, E.Y., Malaspinas, A.S., Jensen, J.D., Marques-Bonet, T., Alkan, C., Prafer, K., Meyer, M., Burbano, H.A., Good, J.M., Schultz, R., Aximu-Petri, A., Butthof, A., Hober, B., Hoffner, B., Siegemund, M., Weihmann, A., Nusbaum, C., Lander, E.S., Russ, C., Novod, N., Affourtit, J., Egholm, M., Verna, C., Rudan, P., Brajkovic, D., Kucan, O., Guic, I., Doronichev, V.B., Golovanova, L.V., Lalueza-Fox, C., de la Rasilla, M., Fortea, J., Rosas, A., Schmitz, R.W., Johnson, P.L.F., Eichler, E.E., Falush, D., Birney, E., Mullikin, J.C., Slatkin, M., Nielsen, R., Kelso, J., Lachmann, M., Reich, D., Paabo, S.: A draft sequence of the Neandertal genome. Science 328(5979), 710–722 (2010). http://www.sciencemag.org/content/328/5979/710.abstractCrossRefGoogle Scholar
  38. 38.
    Griffiths, R., Marjoram, P.: Ancestral inference from samples of DNA sequences with recombination. J. Comput. Biol. 3, 479–502 (1996)CrossRefGoogle Scholar
  39. 39.
    Grummer, J.A., Morando, M.M., Avila, L.J., Sites, J.W., Leaché, A.D.: Phylogenomic evidence for a recent and rapid radiation of lizards in the Patagonian Liolaemus fitzingerii species group. Mol. Phylogenet. Evolut. (2018).  https://doi.org/10.1016/j.ympev.2018.03.023, http://www.sciencedirect.com/science/article/pii/S1055790317307303CrossRefGoogle Scholar
  40. 40.
    Gusfield, D.: ReCombinatorics: the algorithmics of ancestral recombination graphs and explicit phylogenetic networks. MIT Press (2014)Google Scholar
  41. 41.
    Hagen, O., Hartmann, K., Steel, M., Stadler, T.: Age-dependent speciation can explain the shape of empirical phylogenies. Syst. Biol. 64(3), 432–440 (2015). http://dx.doi.org/10.1093/sysbio/syv001CrossRefGoogle Scholar
  42. 42.
    Hahn, M.W.: Toward a selection theory of molecular evolution. Evolution 62(2), 255–265 (2008).  https://doi.org/10.1111/j.1558-5646.2007.00308.xCrossRefGoogle Scholar
  43. 43.
    Harrison, R.G., Larson, E.L.: Hybridization, introgression, and the nature of species boundaries. J. Heredity 105(S1), 795–809 (2014)CrossRefGoogle Scholar
  44. 44.
    Hejase, H.A., Liu, K.J.: A scalability study of phylogenetic network inference methods using empirical datasets and simulations involving a single reticulation. BMC Bioinform. 17(1), 422 (2016). https://doi.org/10.1186/s12859-016-1277-1
  45. 45.
    Hey, J.: Isolation with migration models for more than two populations. Mol. Biol. Evolut. 27(4), 905–920 (2010). http://dx.doi.org/10.1093/molbev/msp296CrossRefGoogle Scholar
  46. 46.
    Hudson, R.R.: Gene genealogies and the coalescent process. In: Futuyma, D, Antonovics, J. (eds.) Oxford Surveys in Evolutionary Biology, vol. 7, pp. 1–44. Oxford University Press (1991)Google Scholar
  47. 47.
    Hudson, R.R.: Generating samples under a Wright-Fisher neutral model of genetic variation. Bioinformatics 18, 337–338 (2002)CrossRefGoogle Scholar
  48. 48.
    Huson, D.: SplitsTree: a program for analyzing and visualizing evolutionary data. Bioinformatics 14(1), 68–73 (1998)CrossRefGoogle Scholar
  49. 49.
    Huson, D., Richter, D., Rausch, C., Dezulian, T., Franz, M., Rupp, R.: Dendroscope: an interactive viewer for large phylogenetic trees. BMC Bioinform. 8(1), 460 (2007)CrossRefGoogle Scholar
  50. 50.
    Jarvis, E.D., Mirarab, S., Aberer, A.J., Li, B., Houde, P., Li, C., Ho, S.Y.W., Faircloth, B.C., Nabholz, B., Howard, J.T., Suh, A., Weber, C.C., da Fonseca, R.R., Li, J., Zhang, F., Li, H., Zhou, L., Narula, N., Liu, L., Ganapathy, G., Boussau, B., Bayzid, M.S., Zavidovych, V., Subramanian, S., Gabaldón, T., Capella-Gutiérrez, S., Huerta-Cepas, J., Rekepalli, B., Munch, K., Schierup, M., Lindow, B., Warren, W.C., Ray, D., Green, R.E., Bruford, M.W., Zhan, X., Dixon, A., Li, S., Li, N., Huang, Y., Derryberry, E.P., Bertelsen, M.F., Sheldon, F.H., Brumfield, R.T., Mello, C.V., Lovell, P.V., Wirthlin, M., Schneider, M.P.C., Prosdocimi, F., Samaniego, J.A., Velazquez, A.M.V., Alfaro-Núñez, A., Campos, P.F., Petersen, B., Sicheritz-Ponten, T., Pas, A., Bailey, T., Scofield, P., Bunce, M., Lambert, D.M., Zhou, Q., Perelman, P., Driskell, A.C., Shapiro, B., Xiong, Z., Zeng, Y., Liu, S., Li, Z., Liu, B., Wu, K., Xiao, J., Yinqi, X., Zheng, Q., Zhang, Y., Yang, H., Wang, J., Smeds, L., Rheindt, F.E., Braun, M., Fjeldsa, J., Orlando, L., Barker, F.K., Jønsson, K.A., Johnson, W., Koepfli, K.P., O’Brien, S., Haussler, D., Ryder, O.A., Rahbek, C., Willerslev, E., Graves, G.R., Glenn, T.C., McCormack, J., Burt, D., Ellegren, H., Alström, P., Edwards, S.V., Stamatakis, A., Mindell, D.P., Cracraft, J., Braun, E.L., Warnow, T., Jun, W., Gilbert, M.T.P., Zhang, G.: Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 346(6215), 1320–1331 (2014)CrossRefGoogle Scholar
  51. 51.
    Jin, G., Nakhleh, L., Snir, S., Tuller, T.: Efficient parsimony-based methods for phylogenetic network reconstruction. Bioinformatics 23, e123–e128 (2006). Proceedings of the European Conference on Computational Biology (ECCB 06)CrossRefGoogle Scholar
  52. 52.
    Jin, G., Nakhleh, L., Snir, S., Tuller, T.: Maximum likelihood of phylogenetic networks. Bioinformatics 22(21), 2604–2611 (2006)CrossRefGoogle Scholar
  53. 53.
    Jin, G., Nakhleh, L., Snir, S., Tuller, T.: Inferring phylogenetic networks by the maximum parsimony criterion: a case study. Mol. Biol. Evolut. 24(1), 324–337 (2007)CrossRefGoogle Scholar
  54. 54.
    Jin, G., Nakhleh, L., Snir, S., Tuller, T.: A new linear-time heuristic algorithm for computing the parsimony score of phylogenetic networks: theoretical bounds and empirical performance. In: Mandoiu, I., Zelikovsky, A. (eds.) Proceedings of the International Symposium on Bioinformatics Research and Applications. Lecture Notes in Bioinformatics, vol. 4463, pp. 61–72 (2007)Google Scholar
  55. 55.
    Jin, G., Nakhleh, L., Snir, S., Tuller, T.: Parsimony score of phylogenetic networks: hardness results and a linear-time heuristic. IEEE/ACM Trans. Comput. Biol. Bioinform. 6(3), 495–505 (2009)CrossRefGoogle Scholar
  56. 56.
    Kamneva, O.K., Rosenberg, N.A.: Simulation-based evaluation of hybridization network reconstruction methods in the presence of incomplete lineage sorting. Evolut. Bioinform. 13, 1176934317691,935 (2017)CrossRefGoogle Scholar
  57. 57.
    Kanj, I., Nakhleh, L., Than, C., Xia, G.: Seeing the trees and their branches in the network is hard. Theoret. Comput. Sci. 401, 153–164 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  58. 58.
    Kanj, I., Nakhleh, L., Xia, G.: The compatibility of binary characters on phylogenetic networks: complexity and parameterized algorithms. Algorithmica 51, 99–128 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  59. 59.
    Kubatko, L., Chifman, J.: An invariants-based method for efficient identification of hybrid species from large-scale genomic data. bioRxiv, p. 034348 (2015)Google Scholar
  60. 60.
    Kubatko, L.S.: Identifying hybridization events in the presence of coalescence via model selection. Syst. Biol. 58(5), 478–488 (2009)CrossRefGoogle Scholar
  61. 61.
    Kumar, V., Lammers, F., Bidon, T., Pfenninger, M., Kolter, L., Nilsson, M.A., Janke, A.: The evolutionary history of bears is characterized by gene flow across species. Sci. Rep. 7, 46,487 (2017)Google Scholar
  62. 62.
    Lake, J.A.: A rate-independent technique for analysis of nucleic acid sequences: evolutionary parsimony. Mol. Biol. Evolution 4(2), 167–191 (1987)Google Scholar
  63. 63.
    Lipson, M., Loh, P.R., Levin, A., Reich, D., Patterson, N., Berger, B.: Efficient moment-based inference of admixture parameters and sources of gene flow. Mol. Biol. Evolut. 30(8), 1788–1802 (2013). http://dx.doi.org/10.1093/molbev/mst099CrossRefGoogle Scholar
  64. 64.
    Liu, K., Steinberg, E., Yozzo, A., Song, Y., Kohn, M., Nakhleh, L.: Interspecific introgressive origin of genomic diversity in the house mouse. Proc. Nat. Acad. Sci. 112(1), 196–201 (2015)CrossRefGoogle Scholar
  65. 65.
    Liu, L., Xi, Z., Wu, S., Davis, C.C., Edwards, S.V.: Estimating phylogenetic trees from genome-scale data. Ann. New York Acad. Sci. 1360(1), 36–53 (2015)CrossRefGoogle Scholar
  66. 66.
    Liu, L., Yu, L., Edwards, S.V.: A maximum pseudo-likelihood approach for estimating species trees under the coalescent model. BMC Evolut. Biol. 10(1), 302 (2010). https://doi.org/10.1186/1471-2148-10-302CrossRefGoogle Scholar
  67. 67.
    Liu, L., Yu, L.L., Kubatko, L., Pearl, D.K., Edwards, S.V.: Coalescent methods for estimating phylogenetic trees. Mol. Phylogenet. Evol. 53, 320–328 (2009)CrossRefGoogle Scholar
  68. 68.
    Long, J.C.: The genetic structure of admixed populations. Genetics 127, 417–428 (1991)Google Scholar
  69. 69.
    Maddison, W.: Gene trees in species trees. Syst. Biol. 46(3), 523–536 (1997)CrossRefGoogle Scholar
  70. 70.
    Maddison, W.P., Knowles, L.L.: Inferring phylogeny despite incomplete lineage sorting. Syst. Biol. 55, 21–30 (2006)CrossRefGoogle Scholar
  71. 71.
    Mallet, J.: Hybridization as an invasion of the genome. TREE 20(5), 229–237 (2005)Google Scholar
  72. 72.
    Mallet, J.: Hybrid speciation. Nature 446, 279–283 (2007)CrossRefGoogle Scholar
  73. 73.
    Mallet, J., Besansky, N., Hahn, M.W.: How reticulated are species? BioEssays 38(2), 140–149 (2016)CrossRefGoogle Scholar
  74. 74.
    Marcussen, T., Sandve, S.R., Heier, L., Spannagl, M., Pfeifer, M.: The international wheat genome sequencing consortium, Jakobsen, K.S., Wulff, B.B.H., Steuernagel, B., Mayer, K.F.X., Olsen, O.A., Ancient hybridizations among the ancestral genomes of bread wheat. Science 345(6194), 1250,092 (2014)Google Scholar
  75. 75.
    Mirarab, S., Reaz, R., Bayzid, M.S., Zimmermann, T., Swenson, M.S., Warnow, T.: ASTRAL: genome-scale coalescent-based species tree estimation. Bioinformatics 30(17), i541–i548 (2014). http://dx.doi.org/10.1093/bioinformatics/btu462CrossRefGoogle Scholar
  76. 76.
    Mueller, N.F., Ogilvie, H.A., Zhang, C., Drummond, A.J., Stadler, T.: Inference of species histories in the presence of gene flow. bioRxiv (2018).  https://doi.org/10.1101/348391, https://www.biorxiv.org/content/early/2018/06/17/348391
  77. 77.
    Nakhleh, L.: Computational approaches to species phylogeny inference and gene tree reconciliation. Trends Ecol. Evolut. 28(12), 719–728 (2013)CrossRefGoogle Scholar
  78. 78.
    Nakhleh, L., Jin, G., Zhao, F., Mellor-Crummey, J.: Reconstructing phylogenetic networks using maximum parsimony. In: Proceedings of the 2005 IEEE Computational Systems Bioinformatics Conference (CSB2005), pp. 93–102 (2005)Google Scholar
  79. 79.
    Nakhleh, L., Ringe, D.A., Warnow, T.: Perfect phylogenetic networks: a new methodology for reconstructing the evolutionary history of natural languages. Language 81(2), 382–420 (2005)CrossRefGoogle Scholar
  80. 80.
    Nakhleh, L., Sun, J., Warnow, T., Linder, C.R., Moret, B.M., Tholse, A.: Towards the development of computational tools for evaluating phylogenetic network reconstruction methods. In: Biocomputing 2003, pp. 315–326. World Scientific (2002)Google Scholar
  81. 81.
    Nichio, B.T., Marchaukoski, J.N., Raittz, R.T.: New tools in orthology analysis: a brief review of promising perspectives. Front. Genet. 8, 165 (2017)CrossRefGoogle Scholar
  82. 82.
    Nicholson, G., Smith, A.V., Jónsson, F., Gústafsson, Ó., Stefánsson, K., Donnelly, P.: Assessing population differentiation and isolation from single-nucleotide polymorphism data. J. R. Stat. Soc. Series B (Stat. Method.) 64(4), 695–715 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  83. 83.
    Ogilvie, H.A., Bouckaert, R.R., Drummond, A.J.: StarBEAST2 brings faster species tree inference and accurate estimates of substitution rates. Mol. Biol. Evolut. 34(8), 2101–2114 (2017). http://dx.doi.org/10.1093/molbev/msx126CrossRefGoogle Scholar
  84. 84.
    Ogilvie, H.A., Heled, J., Xie, D., Drummond, A.J.: Computationalperformanceand statistical accuracy of *BEAST and comparisons with other methods. Syst. Biol. 65(3), 381–396 (2016).  https://doi.org/10.1093/sysbio/syv118, http://sysbio.oxfordjournals.org/content/65/3/381.abstractCrossRefGoogle Scholar
  85. 85.
    Osada, N., Uno, Y., Mineta, K., Kameoka, Y., Takahashi, I., Terao, K.: Ancient genome-wide admixture extends beyond the current hybrid zone between Macaca fascicularis and M. mulatta. Mol. Ecol. 19(14), 2884–2895 (2010)CrossRefGoogle Scholar
  86. 86.
    Park, H., Nakhleh, L.: MURPAR: A fast heuristic for inferring parsimonious phylogenetic networks from multiple gene trees. In: Proceedings of the International Symposium on Bioinformatics Research and Applications (ISBRA 12). Lecture Notes in Bioinformatics, vol. 7292, pp. 213–224 (2012)CrossRefGoogle Scholar
  87. 87.
    Pease, J.B., Haak, D.C., Hahn, M.W., Moyle, L.C.: Phylogenomics reveals three sources of adaptive variation during a rapid radiation. PLoS Biol. 14(2), e1002,379 (2016)CrossRefGoogle Scholar
  88. 88.
    Pease, J.B., Hahn, M.W.: Detection and polarization of introgression in a five-taxon phylogeny. Syst. Biol. 64(4), 651–662 (2015)CrossRefGoogle Scholar
  89. 89.
    Peter, B.M.: Admixture, population structure, and F-statistics. Genetics 202(4), 1485–1501 (2016)CrossRefGoogle Scholar
  90. 90.
    Pickrell, J.K., Pritchard, J.K.: Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 8(11), e1002,967 (2012)CrossRefGoogle Scholar
  91. 91.
    Racimo, F., Sankararaman, S., Nielsen, R., Huerta-Sánchez, E.: Evidence for archaic adaptive introgression in humans. Nat. Rev. Genet. 16(6), 359–371 (2015)CrossRefGoogle Scholar
  92. 92.
    Rambaut, A., Grassly, N.C.: Seq-gen: an application for the Monte Carlo simulation of DNA sequence evolution along phylogenetic trees. Comp. Appl. Biosci. 13, 235–238 (1997)Google Scholar
  93. 93.
    Rannala, B., Yang, Z.: Efficient Bayesian species tree inference under the multispecies coalescent. Syst. Biol. 66(5), 823–842 (2017). http://dx.doi.org/10.1093/sysbio/syw119
  94. 94.
    Rasmussen, M.D., Hubisz, M.J., Gronau, I., Siepel, A.: Genome-wide inference of ancestral recombination graphs. PLoS Genet. 10(5), e1004,342 (2014)CrossRefGoogle Scholar
  95. 95.
    Rasmussen, M.D., Kellis, M.: Unified modeling of gene duplication, loss, and coalescence using a locus tree. Gen. Res. 22(4), 755–765 (2012).  https://doi.org/10.1101/gr.123901.111, http://genome.cshlp.org/content/22/4/755.abstractCrossRefGoogle Scholar
  96. 96.
    Rieseberg, L.H.: Hybrid origins of plant species. Ann. Rev. Ecol. Syst. 28, 359–389 (1997)CrossRefGoogle Scholar
  97. 97.
    Roch, S.: A short proof that phylogenetic tree reconstruction by maximum likelihood is hard. IEEE Trans. Comput. Biol. Bioinf. 3(1), 92–94 (2006)CrossRefGoogle Scholar
  98. 98.
    Scornavacca, C., Galtier, N.: Incomplete lineage sorting in mammalian phylogenomics. Syst. Biol. 66(1), 112–120 (2017). http://dx.doi.org/10.1093/sysbio/syw082
  99. 99.
    Semple, C., Steel, M.: Phylogenetics. Oxford Series in Mathematics and its Applications (2004)Google Scholar
  100. 100.
    Simmons, M.P., Gatesy, J.: Coalescence versus concatenation: sophisticated analyses versus first principles applied to rooting the angiosperms. Mol. Phylogenet. Evolut. 91, 98–122 (2015). https://doi.org/10.1016/j.ympev.2015.05.011, http://www.sciencedirect.com/science/article/pii/S1055790315001487CrossRefGoogle Scholar
  101. 101.
    Solís-Lemus, C., Ané, C.: Inferring phylogenetic networks with maximum pseudolikelihood under incomplete lineage sorting. PLoS Genet. 12(3), e1005,896 (2016)CrossRefGoogle Scholar
  102. 102.
    Solís-Lemus, C., Bastide, P., Ané, C.: PhyloNetworks: a package for phylogenetic networks. Mol. Biol. Evolut. 34(12), 3292–3298 (2017). http://dx.doi.org/10.1093/molbev/msx235CrossRefGoogle Scholar
  103. 103.
    Solís-Lemus, C., Yang, M., Ané, C.: Inconsistency of species-tree methods under gene flow. Syst. Biol. (2016).  https://doi.org/10.1093/sysbio/syw030CrossRefGoogle Scholar
  104. 104.
    Song, Y., Endepols, S., Klemann, N., Richter, D., Matuschka, F.R., Shih, C.H., Nachman, M.W., Kohn, M.H.: Adaptive introgression of anticoagulant rodent poison resistance by hybridization between old world mice. Curr. Biol. 21(15), 1296–1301 (2011).  https://doi.org/10.1016/j.cub.2011.06.043, http://www.sciencedirect.com/science/article/pii/S0960982211007160CrossRefGoogle Scholar
  105. 105.
    Stadler, T.: Sampling-through-time in birth-death trees. J. Theoret. Biol. 267(3), 396–404 (2010).  https://doi.org/10.1016/j.jtbi.2010.09.010, http://www.sciencedirect.com/science/article/pii/S0022519310004765MathSciNetzbMATHCrossRefGoogle Scholar
  106. 106.
    Stamatakis, A.: RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22(21), 2688–2690 (2006)CrossRefGoogle Scholar
  107. 107.
    Steel, M.: Phylogeny: discrete and random processes in evolution. SIAM (2016)Google Scholar
  108. 108.
    Stevison, L., Kohn, M.: Divergence population genetic analysis of hybridization between rhesus and cynomolgus macaques. Mol. Ecol. 18(11), 2457–2475 (2009)CrossRefGoogle Scholar
  109. 109.
    Than, C., Nakhleh, L.: Species tree inference by minimizing deep coalescences. PLoS Comput. Biol. 5(9), e1000,501 (2009)MathSciNetCrossRefGoogle Scholar
  110. 110.
    Than, C., Ruths, D., Nakhleh, L.: PhyloNet: a software package for analyzing and reconstructing reticulate evolutionary relationships. BMC Bioinform. 9(1), 322 (2008)CrossRefGoogle Scholar
  111. 111.
    The Heliconious Genome Consortium: Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature 487(7405), 94–98 (2012). http://dx.doi.org/10.1038/nature11041
  112. 112.
    Van Iersel, L., Kelk, S., Rupp, R., Huson, D.: Phylogenetic networks do not need to be complex: using fewer reticulations to represent conflicting clusters. Bioinformatics 26(12), i124–i131 (2010)CrossRefGoogle Scholar
  113. 113.
    Wang, L., Zhang, K., Zhang, L.: Perfect phylogenetic networks with recombination. In: Proceedings of the 2001 ACM Symposium on Applied Computing, SAC ’01, pp. 46–50. ACM, New York, NY, USA (2001). http://doi.acm.org/10.1145/372202.372271
  114. 114.
    Warnow, T.: Computational phylogenetics: an introduction to designing methods for phylogeny estimation. Cambridge University Press (2017)Google Scholar
  115. 115.
    Waterhouse, S.R., MacKay, D., Robinson, A.J.: Bayesian methods for mixtures of experts. In: Advances in Neural Information Processing Systems, pp. 351–357 (1996)Google Scholar
  116. 116.
    Wen, D., Nakhleh, L.: Co-estimating reticulate phylogenies and gene trees from multi-locus sequence data. Syst. Biol. 67(3), 439–457 (2018)CrossRefGoogle Scholar
  117. 117.
    Wen, D., Yu, Y., Hahn, M., Nakhleh, L.: Reticulate evolutionary history and extensive introgression in mosquito species revealed by phylogenetic network analysis. Mol.Ecol. 25, 2361–2372 (2016)CrossRefGoogle Scholar
  118. 118.
    Wen, D., Yu, Y., Nakhleh, L.: Bayesian inference of reticulate phylogenies under the multispecies network coalescent. PLoS Genet. 12(5), e1006,006 (2016)CrossRefGoogle Scholar
  119. 119.
    Wen, D., Yu, Y., Zhu, J., Nakhleh, L.: Inferring phylogenetic networks using PhyloNet. Syst. Biol. 67(4), 735–740 (2018)CrossRefGoogle Scholar
  120. 120.
    Wu, Y.: Close lower and upper bounds for the minimum reticulate network of multiple phylogenetic trees. Bioinformatics 26(12), i140–i148 (2010)CrossRefGoogle Scholar
  121. 121.
    Wu, Y.: An algorithm for constructing parsimonious hybridization networks with multiple phylogenetic trees. J. Comput. Biol. 20(10), 792–804 (2013)MathSciNetCrossRefGoogle Scholar
  122. 122.
    Yu, Y., Barnett, R., Nakhleh, L.: Parsimonious inference of hybridization in the presence of incomplete lineage sorting. Syst. Biol. 62(5), 738–751 (2013)CrossRefGoogle Scholar
  123. 123.
    Yu, Y., Degnan, J., Nakhleh, L.: The probability of a gene tree topology within a phylogenetic network with applications to hybridization detection. PLoS Genet. 8, e1002,660 (2012)CrossRefGoogle Scholar
  124. 124.
    Yu, Y., Dong, J., Liu, K., Nakhleh, L.: Maximum likelihood inference of reticulate evolutionary histories. Proc. Nat. Acad. Sci. 111(46), 16,448–6453 (2014)CrossRefGoogle Scholar
  125. 125.
    Yu, Y., Nakhleh, L.: A maximum pseudo-likelihood approach for phylogenetic networks. BMC Genom. 16, S10 (2015)CrossRefGoogle Scholar
  126. 126.
    Yu, Y., Ristic, N., Nakhleh, L.: Fast algorithms and heuristics for phylogenomics under ILS and hybridization. BMC Bioinform. 14(Suppl 15), S6 (2013)CrossRefGoogle Scholar
  127. 127.
    Yu, Y., Than, C., Degnan, J., Nakhleh, L.: Coalescent histories on phylogenetic networks and detection of hybridization despite incomplete lineage sorting. Syst. Biol. 60(2), 138–149 (2011)CrossRefGoogle Scholar
  128. 128.
    Yu, Y., Warnow, T., Nakhleh, L.: Algorithms for mdc-based multi-locus phylogeny inference: beyond rooted binary gene trees on single alleles. J. Comput. Biol. 18(11), 1543–1559 (2011)MathSciNetCrossRefGoogle Scholar
  129. 129.
    Yule, G.U.: A mathematical theory of evolution based on the conclusions of Dr. J.C. Willis, F.R.S. Phil. Trans. R. Soc. Lond. B 213, 21–87 (1924)Google Scholar
  130. 130.
    Zhang, B., Wu, Y.C.: Coestimation of gene trees and reconciliations under a duplication-loss-coalescence model. In: Cai, Z., Daescu, O., Li, M. (eds.) Bioinformatics Research and Applications, pp. 196–210. Springer International Publishing, Cham (2017)CrossRefGoogle Scholar
  131. 131.
    Zhang, C., Ogilvie, H.A., Drummond, A.J., Stadler, T.: Bayesian inference of species networks from multilocus sequence data. Mol. Biol. Evolut. 35(2), 504–517 (2018). http://dx.doi.org/10.1093/molbev/msx307CrossRefGoogle Scholar
  132. 132.
    Zhang, L.: On tree-based phylogenetic networks. J. Comput. Biol. 23(7), 553–565 (2016)MathSciNetCrossRefGoogle Scholar
  133. 133.
    Zhang, W., Dasmahapatra, K.K., Mallet, J., Moreira, G.R., Kronforst, M.R.: Genome-wide introgression among distantly related Heliconius butterfly species. Genome Biol. 17, 25 (2016)CrossRefGoogle Scholar
  134. 134.
    Zhu, J., Nakhleh, L.: Inference of species phylogenies from bi-allelic markers using pseudo-likelihood. Bioinformatics 34, i376–i385 (2018).  https://doi.org/10.1093/bioinformatics/bty295CrossRefGoogle Scholar
  135. 135.
    Zhu, J., Wen, D., Yu, Y., Meudt, H.M., Nakhleh, L.: Bayesian inference of phylogenetic networks from bi-allelic genetic markers. PLOS Comput. Biol. 14(1), 1–32 (2018). https://doi.org/10.1371/journal.pcbi.1005932CrossRefGoogle Scholar
  136. 136.
    Zhu, J., Yu, Y., Nakhleh, L.: In the light of deep coalescence: revisiting trees within networks. BMC Bioinform. 17(14), 415 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • R. A. Leo Elworth
    • 1
  • Huw A. Ogilvie
    • 1
  • Jiafan Zhu
    • 1
  • Luay Nakhleh
    • 1
    Email author
  1. 1.Rice UniversityHoustonUSA

Personalised recommendations