Advertisement

Genome Rearrangement Problems with Single and Multiple Gene Copies: A Review

  • Ron Zeira
  • Ron ShamirEmail author
Chapter
Part of the Computational Biology book series (COBO, volume 29)

Abstract

Genome rearrangement problems arise in both species evolution and cancer research. Basic genome rearrangement models assume that the genome contains a single copy of each gene and the only changes in the genome are structural, i.e., reordering of segments. In contrast, numerical changes such as deletions and duplications, which change the number of copies of genes, have been observed in species evolution and prominently in tumorigenesis. Here, we review various computational models of evolution by rearrangements designed for the analysis of species or cancer genomes, focusing mainly on genomes with multiple gene copies. Models differ in the assumptions taken on the genome structure and in the type of rearrangements allowed during their evolution. Most problems regarding genomes with multiple gene copies are computationally hard, and practical methods for their analysis are reviewed. As more high-resolution genomes become available, especially in cancer, better models and efficient algorithms will be needed.

Keywords

Genome rearrangements Cancer Tumor Structural aberrations Numerical aberrations Genome sorting problem Complexity Algorithms Evolution 

Notes

Acknowledgements

We thank Nimrod Rappoport for helpful comments. Study supported in part by the Naomi Prawer Kadar Foundation, the Bella Walter Memorial Fund of the Israel Cancer Association and by Len Blavatnik and the Blavatnik Family Foundation. R.Z. was supported in part by a fellowship from the Edmond J. Safra Center for Bioinformatics at Tel-Aviv University.

References

  1. 1.
    Alekseyev, M.A., Pevzner, P.A.: Colored de Bruijn graphs and the genome halving problem. IEEE/ACM Trans. Comput. Biol. Bioinform. 4(1), 98–107 (2007).  https://doi.org/10.1109/TCBB.2007.1002. URL http://dl.acm.org/citation.cfm?id=1229968.1229980CrossRefGoogle Scholar
  2. 2.
    Alekseyev, M.A., Pevzner, P.A.: Whole genome duplications and contracted breakpoint graphs. SIAM J. Comput. 36(6), 1748–1763 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Angibaud, S., Fertin, G., Rusu, I., Thévenin, A., Vialette, S.: A pseudo-boolean programming approach for computing the breakpoint distance between two genomes with duplicate genes. In: Proceedings of the RECOMB-CG, pp. 16–29. Springer, Berlin, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-74960-8_2
  4. 4.
    Angibaud, S., Fertin, G., Rusu, I., Thévenin, A., Vialette, S.: Efficient tools for computing the number of breakpoints and the number of adjacencies between two genomes with duplicate genes. J. Comput. Biol. 15(8), 1093–115 (2008).  https://doi.org/10.1089/cmb.2008.0061. http://online.liebertpub.com/doi/abs/10.1089/cmb.2008.0061MathSciNetCrossRefGoogle Scholar
  5. 5.
    Avdeyev, P., Alexeev, N., Rong, Y., Alekseyev, M.A.: A unified ILP framework for genome median, halving, and aliquoting problems under DCJ. In: Meidanis, J., Nakhleh, L. (eds.) Proceedings of the RECOMB-CG, pp. 156–178. Springer International Publishing, Cham (2017)CrossRefGoogle Scholar
  6. 6.
    Bader, D.A., Moret, B.M., Yan, M.: A linear-time algorithm for computing inversion distance between signed permutations with an experimental study. J. Comput. Biol. 8(5), 483–491 (2001).  https://doi.org/10.1089/106652701753216503. http://www.liebertonline.com/doi/abs/10.1089/106652701753216503zbMATHCrossRefGoogle Scholar
  7. 7.
    Bader, M.: Sorting by reversals, block interchanges, tandem duplications, and deletions. BMC Bioinform. 10(Suppl 1), S9 (2009).  https://doi.org/10.1186/1471-2105-10-S1-S9. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2648760&tool=pmcentrez&rendertype=abstract
  8. 8.
    Bader, M.: Genome rearrangements with duplications. BMC Bioinform. 11(Suppl 1), S27 (2010).  https://doi.org/10.1186/1471-2105-11-S1-S27. http://www.biomedcentral.com/1471-2105/11/S1/S27
  9. 9.
    Bafna, V., Pevzner, P.: Genome rearrangements and sorting by reversals. SIAM J. Comput. 25(2), 272–289 (1996).  https://doi.org/10.1137/S0097539793250627MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Barillot, E., Calzone, L., Hupé, P., Vert, J.P., Zinovyev, A.: Computational Systems Biology of Cancer. CRC Press (2012)Google Scholar
  11. 11.
    Beerenwinkel, N., Greenman, C.D., Lagergren, J.: Computational cancer biology: an evolutionary perspective. PLoS Comput. Biol. 12(2), e1004717 (2016).  https://doi.org/10.1371/journal.pcbi.1004717. http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004717CrossRefGoogle Scholar
  12. 12.
    Bell, D., et al.: Integrated genomic analyses of ovarian carcinoma. Nature 474(7353), 609–15 (2011).  https://doi.org/10.1038/nature10166. http://www.nature.com/doifinder/10.1038/nature10166CrossRefGoogle Scholar
  13. 13.
    Bergeron, A.: A very elementary presentation of the Hannenhalli-Pevzner theory. Discrete Appl. Math. 146(2), 134–145 (2005).  https://doi.org/10.1016/j.dam.2004.04.010. http://linkinghub.elsevier.com/retrieve/pii/S0166218X04003440MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Bergeron, A., Mixtacki, J., Stoye, J.: A unifying view of genome rearrangements. In: Bücher, P., Moret, B.M. (eds.) Proceedings of the Workshop Algorithms in Bioinformatics (WABI). Lecture Notes in Computer Science, vol. 4175, pp. 163–173. Springer (2006).  https://doi.org/10.1007/11851561_16Google Scholar
  15. 15.
    Bergeron, A., Mixtacki, J., Stoye, J.: On sorting by translocations. J. Comput. Biol. 13(2), 567–578 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Bergeron, A., Mixtacki, J., Stoye, J.: A new linear time algorithm to compute the genomic distance via the double cut and join distance. Theor. Comput. Sci. 410(51), 5300–5316 (2009).  https://doi.org/10.1016/j.tcs.2009.09.008MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Berman, P., Hannenhalli, S.: Fast sorting by reversal. In: Proceedings of the Combinatorial Pattern Matching, pp. 168–185. Springer, Berlin, Heidelberg (1996).  https://doi.org/10.1007/3-540-61258-0_14. http://link.springer.com/10.1007/3-540-61258-0_14CrossRefGoogle Scholar
  18. 18.
    Blin, G., Chauve, C., Fertin, G., Rizzi, R., Vialette, S.: Comparing genomes with duplications: a computational complexity point of view. IEEE/ACM Trans. Comput. Biol. Bioinform. 4(4), 523–534 (2007).  https://doi.org/10.1109/TCBB.2007.1069. http://www.ncbi.nlm.nih.gov/pubmed/17975264, http://ieeexplore.ieee.org/document/4359864/CrossRefGoogle Scholar
  19. 19.
    Blin, G., Fertin, G., Chauve, C.: The breakpoint distance for signed sequences. In: Proceedings of the 1st Conference on Algorithms and Computational Methods for Biochemical and Evolutionary Networks, vol. 3, pp. 3–16. King’s College London Publications (2004)Google Scholar
  20. 20.
    Bowers, J.E., Chapman, B.A., Rong, J., Paterson, A.H.: Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422(6930), 433 (2003)CrossRefGoogle Scholar
  21. 21.
    Braga, M.D.V., Chauve, C., Doerr, D., Jahn, K., Stoye, J., Thévenin, A., Wittler, R.: The potential of family-free genome comparison. In: Models and Algorithms for Genome Evolution, pp. 287–307. Springer (2013)Google Scholar
  22. 22.
    Braga, M.D.V., Machado, R., Ribeiro, L.C., Stoye, J.: Genomic distance under gene substitutions. BMC Bioinform. 12(Suppl 9), S8 (2011).  https://doi.org/10.1186/1471-2105-12-S9-S8. http://www.biomedcentral.com/1471-2105/12/S9/S8
  23. 23.
    Braga, M.D.V., Willing, E., Stoye, J.: Double cut and join with insertions and deletions. J. Comput. Biol. 18(9), 1167–84 (2011).  https://doi.org/10.1089/cmb.2011.0118. http://www.ncbi.nlm.nih.gov/pubmed/21899423MathSciNetCrossRefGoogle Scholar
  24. 24.
    Bryant, D.: The complexity of calculating exemplar distances. In: Sankoff, D., Nadeau, J.H. (eds.) Comparative Genomics: Empirical and Analytical Approaches to Gene Order Dynamics, Map Alignment and the Evolution of Gene Families, pp. 207–211. Springer Netherlands, Dordrecht (2000).  https://doi.org/10.1007/978-94-011-4309-7_19CrossRefGoogle Scholar
  25. 25.
    Caprara, A.: Sorting by reversals is difficult. In: Proceedings of the Annual Conference on Research in Computational Molecular Biology, pp. 75–83. New York, NY, USA (1997).  https://doi.org/10.1145/267521.267531. http://dl.acm.org/citation.cfm?id=267521.267531
  26. 26.
    Chen, X., Zheng, J., Fu, Z., Nan, P., Zhong, Y., Lonardi, S., Jiang, T.: Assignment of orthologous genes via genome rearrangement. IEEE/ACM Trans. Comput. Biol. Bioinform. 2(4), 302–15 (2005).  https://doi.org/10.1109/TCBB.2005.48. http://dl.acm.org/citation.cfm?id=1100863.1100950CrossRefGoogle Scholar
  27. 27.
    Chinwalla, A.T., et al.: Initial sequencing and comparative analysis of the mouse genome. Nature 420(6915), 520–562 (2002).  https://doi.org/10.1038/nature01262. http://www.nature.com/doifinder/10.1038/nature01262
  28. 28.
    Chowdhury, S.A., Gertz, E.M., Wangsa, D., Heselmeyer-Haddad, K., Ried, T., Schäffer, A.A., Schwartz, R.: Inferring models of multiscale copy number evolution for single-tumor phylogenetics. Bioinformatics 31(12), i258–67 (2015).  https://doi.org/10.1093/bioinformatics/btv233. http://bioinformatics.oxfordjournals.org/content/31/12/i258.fullCrossRefGoogle Scholar
  29. 29.
    Chowdhury, S.A., Shackney, S.E., Heselmeyer-Haddad, K., Ried, T., Schäffer, A.A., Schwartz, R.: Algorithms to model single gene, single chromosome, and whole genome copy number changes jointly in tumor phylogenetics. PLoS Comput. Biol. 10(7), e1003740 (2014).  https://doi.org/10.1371/journal.pcbi.1003740. http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003740CrossRefGoogle Scholar
  30. 30.
    Ding, L., et al.: Clonal evolution in relapsed acute myeloid Leukaemia revealed by whole-genome sequencing. Nature 481(7382), 506–10 (2012).  https://doi.org/10.1038/nature10738CrossRefGoogle Scholar
  31. 31.
    Ding, L., Wendl, M.C., McMichael, J.F., Raphael, B.J.: Expanding the computational toolbox for mining cancer genomes. Nat. Rev. Genet. 15(8), 556–570 (2014).  https://doi.org/10.1038/nrg3767CrossRefGoogle Scholar
  32. 32.
    Doerr, D., Feijão, P., Stoye, J.: Family-free genome comparison. In: Setubal, J.C., Stoye, J., Stadler, P.F. (eds.) Comparative Genomics: Methods and Protocols, pp. 331–342. Springer New York, NY, USA (2018).  https://doi.org/10.1007/978-1-4939-7463-4_12Google Scholar
  33. 33.
    Eitan, R., Shamir, R.: Reconstructing cancer karyotypes from short read data: the half empty and half full glass. BMC Bioinform. 18(1), 488 (2017).  https://doi.org/10.1186/s12859-017-1929-9. https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-017-1929-9
  34. 34.
    El-Kebir, M., Raphael, B.J., Shamir, R., Sharan, R., Zaccaria, S., Zehavi, M., Zeira, R.: Complexity and algorithms for copy-number evolution problems. Algorithm Mol. Biol 12(1), 13 (2017).  https://doi.org/10.1186/s13015-017-0103-2. http://almob.biomedcentral.com/articles/10.1186/s13015-017-0103-2
  35. 35.
    El-mabrouk, N.: Sorting signed permutations by reversals and insertions/deletions of contiguous segments. J. Discrete Algs. 1(1), 105–122 (2001)MathSciNetGoogle Scholar
  36. 36.
    El-Mabrouk, N., Nadeau, J.H., Sankoff, D.: Genome halving. In: Farach-Colton, M. (ed.) Proceedings of Combinatorial Pattern Matching, pp. 235–250. Springer, Berlin, Heidelberg (1998)CrossRefGoogle Scholar
  37. 37.
    El-Mabrouk, N., Sankoff, D.: Analysis of gene order evolution beyond single-copy genes. Methods Mol. Biol. 855, 397–429 (2012).  https://doi.org/10.1007/978-1-61779-582-4_15. http://www.ncbi.nlm.nih.gov/pubmed/22407718Google Scholar
  38. 38.
    Elyanow, R., Wu, H.T., Raphael, B.J.: Identifying structural variants using linked-read sequencing data. Bioinformatics 34(2), 353–360 (2018).  https://doi.org/10.1093/bioinformatics/btx712. https://academic.oup.com/bioinformatics/article/34/2/353/4590027CrossRefGoogle Scholar
  39. 39.
    Feijão, P., Meidanis, J.: SCJ: a breakpoint-like distance that simplifies several rearrangement problems. IEEE/ACM Trans. Comput. Biol. Bioinform. 8(5), 1318–29 (2011).  https://doi.org/10.1109/TCBB.2011.34. http://www.ncbi.nlm.nih.gov/pubmed/21339538CrossRefGoogle Scholar
  40. 40.
    Fertin, G., Labarre, A., Rusu, I., Tannier, E., Vialette, S.: Combinatorics of Genome Rearrangements. MIT Press (2009). http://www.google.co.il/books?hl=en&lr=&id=_caK_vcdstwC&pgis=1
  41. 41.
    Fu, Z., Chen, X., Vacic, V., Nan, P., Zhong, Y., Jiang, T.: MSOAR: a high-throughput ortholog assignment system based on genome rearrangement. J. Comput. Biol. 14(9), 1160–1175 (2007).  https://doi.org/10.1089/cmb.2007.0048. http://www.liebertonline.com/doi/abs/10.1089/cmb.2007.0048MathSciNetCrossRefGoogle Scholar
  42. 42.
    Garvin, T., Aboukhalil, R., Kendall, J., Baslan, T., Atwal, G.S., Hicks, J., Wigler, M., Schatz, M.C.: Interactive analysis and assessment of single-cell copy-number variations. Nat. Methods 12, 1058 (2015).  https://doi.org/10.1038/nmeth.3578CrossRefGoogle Scholar
  43. 43.
    Greenman, C.D., Pleasance, E.D., Newman, S., Yang, F., Fu, B., Nik-Zainal, S., Jones, D., Lau, K.W., Carter, N., Edwards, P.A.W., Futreal, P.A., Stratton, M.R., Campbell, P.J.: Estimation of rearrangement phylogeny for cancer genomes. Genome Res. 22(2), 346–61 (2012).  https://doi.org/10.1101/gr.118414.110. http://genome.cshlp.org/content/early/2011/10/12/gr.118414.110CrossRefGoogle Scholar
  44. 44.
    Han, Y.: Improving the efficiency of sorting by reversals. In: Proceedings of the 2006 International Conference on Bioinformatics and Computational Biology, vol. 6, pp. 406–409. Citeseer (2006)Google Scholar
  45. 45.
    Hanahan, D., Weinberg, R.A.: Hallmarks of cancer: the next generation. Cell 144(5), 646–74 (2011).  https://doi.org/10.1016/j.cell.2011.02.013. http://www.ncbi.nlm.nih.gov/pubmed/21376230CrossRefGoogle Scholar
  46. 46.
    Hannenhalli, S.: Polynomial-time algorithm for computing translocation distance between genomes. Discrete Appl. Math. 71(1), 137 – 151 (1996).  https://doi.org/10.1016/S0166-218X(96)00061-3. http://www.sciencedirect.com/science/article/pii/S0166218X96000613MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    Hannenhalli, S., Pevzner, P.A.: Transforming men into mice (polynomial algorithm for genomic distance problem). In: Proceedings of the Annual IEEE Symposium on Foundations of Computer Science, vol. 36, pp. 581–592 (1995).  https://doi.org/10.1109/SFCS.1995.492588. http://doi.ieeecomputersociety.org/10.110910.1109/SFCS.1995.492588
  48. 48.
    Hannenhalli, S., Pevzner, P.A.: Transforming cabbage into turnip: polynomial algorithm for sorting signed permutations by reversals. J. ACM (JACM) 46(1), 1–27 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Hannenhalli, S., Pevzner, P.A.: Transforming cabbage into turnip: polynomial algorithm for sorting signed permutations by reversals. J. ACM 46(1), 1–27 (1999).  https://doi.org/10.1145/300515.300516. http://portal.acm.org/citation.cfm?doid=300515.300516MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    Hupé, P.: Karyotype of the T47D breast cancer cell line. Wikimedia Commons file. https://commons.wikimedia.org/wiki/File:Karyotype_of_the_T47D_breast_cancer_cell_line.svg
  51. 51.
    Jahn, K., Kuipers, J., Beerenwinkel, N.: Tree inference for single-cell data. Genome Biol. 17(1), 86 (2016).  https://doi.org/10.1186/s13059-016-0936-x. http://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-0936-x
  52. 52.
    Jain, M., et al.: Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat. Biotechnol. 36(4), 338–345 (2018).  https://doi.org/10.1038/nbt.4060. http://www.nature.com/doifinder/10.1038/nbt.4060CrossRefGoogle Scholar
  53. 53.
    Jean, G., Nikolski, M.: Genome rearrangements: a correct algorithm for optimal capping. Inf. Process. Lett. 104(1), 14–20 (2007).  https://doi.org/10.1016/j.ipl.2007.04.011. http://www.sciencedirect.com/science/article/pii/S0020019007001147MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    Kahn, C.L., Hristov, B.H., Raphael, B.J.: Parsimony and likelihood reconstruction of human segmental duplications. Bioinformatics 26(18), i446–52 (2010).  https://doi.org/10.1093/bioinformatics/btq368. http://bioinformatics.oxfordjournals.org/content/26/18/i446.shortCrossRefGoogle Scholar
  55. 55.
    Kahn, C.L., Mozes, S., Raphael, B.J.: Efficient algorithms for analyzing segmental duplications with deletions and inversions in genomes. Algorithm Mol. Biol 5(1), 11 (2010).  https://doi.org/10.1186/1748-7188-5-11. http://www.almob.org/content/5/1/11
  56. 56.
    Kahn, C.L., Raphael, B.J.: Analysis of segmental duplications via duplication distance. Bioinformatics 24(16), i133–8 (2008).  https://doi.org/10.1093/bioinformatics/btn292. http://bioinformatics.oxfordjournals.org/content/24/16/i133.shortCrossRefGoogle Scholar
  57. 57.
    Kaplan, H., Shamir, R., Tarjan, R.E.: Faster and simpler algorithm for sorting signed permutations by reversals. SIAM J. Comput. 29(3), 880 (1997).  https://doi.org/10.1137/S0097539798334207. http://link.aip.org/link/SMJCAT/v29/i3/p880/s1&Agg=doiMathSciNetzbMATHCrossRefGoogle Scholar
  58. 58.
    Kececioglu, J., Sankoff, D.: Exact and approximation algorithms for sorting by reversals, with application to genome rearrangement. Algorithmica 13(1–2), 180–210 (1995).  https://doi.org/10.1007/BF01188586. http://link.springer.com/10.1007/BF01188586MathSciNetzbMATHCrossRefGoogle Scholar
  59. 59.
    Kececioglu, J.D., Ravi, R.: Of mice and men: algorithms for evolutionary distances between genomes with translocation. In: Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 604–613. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA (1995). http://dl.acm.org/citation.cfm?id=313651.313825
  60. 60.
    Kováč, J.: On the complexity of rearrangement problems under the breakpoint distance. J. Comput. Biol. 21(1), 1–15 (2014).  https://doi.org/10.1089/cmb.2013.0004. http://online.liebertpub.com/doi/full/10.1089/cmb.2013.0004MathSciNetCrossRefGoogle Scholar
  61. 61.
    Kuipers, J., Jahn, K., Raphael, B.J., Beerenwinkel, N.: Single-cell sequencing data reveal widespread recurrence and loss of mutational hits in the life histories of tumors. Genome Res. (2017).  https://doi.org/10.1101/gr.220707.117. http://www.ncbi.nlm.nih.gov/pubmed/29030470CrossRefGoogle Scholar
  62. 62.
    Li, Y., Zhou, S., Schwartz, D.C., Ma, J.: Allele-specific quantification of structural variations in cancer genomes. Cell Syst. 3(1), 21 – 34 (2016).  https://doi.org/10.1016/j.cels.2016.05.007. http://www.sciencedirect.com/science/article/pii/S240547121630182XCrossRefGoogle Scholar
  63. 63.
    Lodish, H., Berk, A., Darnell, J.E., Kaiser, C.A., Krieger, M., Scott, M.P., Bretscher, A., Ploegh, H., Matsudaira, P., et al.: Molecular Cell Biology. Macmillan (2008)Google Scholar
  64. 64.
    Martinez, F.V., Feijão, P., Braga, M.D., Stoye, J.: On the family-free DCJ distance and similarity. Algorithm Mol. Biol 10(1), 13 (2015).  https://doi.org/10.1186/s13015-015-0041-9. http://www.almob.org/content/10/1/13
  65. 65.
    Mitelman, F., Johansson, B., Mertens, F.: Mitelman database of chromosome aberrations and gene fusions in cancer (2018). http://cgap.nci.nih.gov/Chromosomes/Mitelman
  66. 66.
    Mixtacki, J.: Genome halving under DCJ revisited. In: Hu, X., Wang, J. (eds.) Proceedings of the Computational and Combinatorics. Lecture Notes in Computer Science, vol. 5092, pp. 276–286. Springer, Berlin, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-69733-6. http://dl.acm.org/citation.cfm?id=1426120.1426155Google Scholar
  67. 67.
    Mohri, M.: Edit-distance of weighted automata: general definitions and algorithms. Int. J. Found. Comput. Sci. 14(06), 957–982 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  68. 68.
    Nadeau, J.H., Taylor, B.A.: Lengths of chromosomal segments conserved since divergence of man and mouse. Proc. Natl. Acad. Sci. USA 81(3), 814–818 (1984).  https://doi.org/10.1073/pnas.81.3.814. http://www.pnas.org/content/81/3/814CrossRefGoogle Scholar
  69. 69.
    Nguyen, C.T., Tay, Y.C., Zhang, L.: Divide-and-conquer approach for the exemplar breakpoint distance. Bioinformatics 21(10), 2171–2176 (2005).  https://doi.org/10.1093/bioinformatics/bti327. http://www.ncbi.nlm.nih.gov/pubmed/15713729, https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bti327CrossRefGoogle Scholar
  70. 70.
    Oesper, L., Dantas, S., Raphael, B.J.: Identifying simultaneous rearrangements in cancer genomes. Bioinformatics 34(2), 346–352 (2018).  https://doi.org/10.1093/bioinformatics/btx745. http://academic.oup.com/bioinformatics/article/34/2/346/4665417CrossRefGoogle Scholar
  71. 71.
    Oesper, L., Ritz, A., Aerni, S.J., Drebin, R., Raphael, B.J.: Reconstructing cancer genomes from paired-end sequencing data. BMC Bioinform. 13(Suppl 6), S10 (2012).  https://doi.org/10.1186/1471-2105-13-S6-S10. http://www.biomedcentral.com/1471-2105/13/S6/S10
  72. 72.
    Ozery-Flato, M., Shamir, R.: Two notes on genome rearrangement. J. Bioinform. Comput. Biol. 1(1), 71–94 (2003). http://www.ncbi.nlm.nih.gov/pubmed/15290782CrossRefGoogle Scholar
  73. 73.
    Ozery-Flato, M., Shamir, R.: Sorting by translocations via reversals theory. In: Bourque, G., El-Mabrouk, N. (eds.) Proceedings of the RECOMB-CG, pp. 87–98. Springer, Berlin, Heidelberg (2006)CrossRefGoogle Scholar
  74. 74.
    Ozery-Flato, M., Shamir, R.: Sorting cancer karyotypes by elementary operations. J. Comput. Biol. 16(10), 1445–60 (2009).  https://doi.org/10.1089/cmb.2009.0083. http://online.liebertpub.com/doi/abs/10.1089/cmb.2009.0083MathSciNetCrossRefGoogle Scholar
  75. 75.
    Palmer, J.D., Herbon, L.A.: Plant mitochondrial DNA evolves rapidly in structure, but slowly in sequence. J. Mol. Evol. 28(1–2), 87–97 (1988). http://www.ncbi.nlm.nih.gov/pubmed/3148746CrossRefGoogle Scholar
  76. 76.
    Paten, B., Zerbino, D.R., Hickey, G., Haussler, D.: A unifying model of genome evolution under parsimony. BMC Bioinform. 15(1), 206 (2014)CrossRefGoogle Scholar
  77. 77.
    Pevzner, P., Tesler, G.: Genome rearrangements in mammalian evolution: lessons from human and mouse genomes. Genome Res. 13(1), 37–45 (2003).  https://doi.org/10.1101/gr.757503. http://www.ncbi.nlm.nih.gov/pubmed/12529304, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC430962CrossRefGoogle Scholar
  78. 78.
    Pevzner, P., Tesler, G.: Transforming men into mice. In: Proceedings of the Seventh Annual International Conference on Research in Computational Molecular Biology, pp. 247–256. ACM Press, New York, NY, USA (2003).  https://doi.org/10.1145/640075.640108. http://portal.acm.org/citation.cfm?doid=640075.640108
  79. 79.
    Pinkel, D., Straume, T., Gray, J.W.: Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc. Natl. Acad. Sci. USA 83(9), 2934–2938 (1986).  https://doi.org/10.1073/pnas.83.9.2934. http://www.pnas.org/content/83/9/2934.shortCrossRefGoogle Scholar
  80. 80.
    Popescu, P., Hayes, H.: Techniques in Animal Cytogenetics. Springer Science & Business Media (2000)Google Scholar
  81. 81.
    Rajaraman, A., Ma, J.: Toward recovering Allele-specific cancer genome graphs. J. Comput. Biol. 25(7), 624–636 (2018).  https://doi.org/10.1089/cmb.2018.0022. http://www.liebertpub.com/doi/10.1089/cmb.2018.0022MathSciNetCrossRefGoogle Scholar
  82. 82.
    Rhoads, A., Au, K.F.: PacBio sequencing and its applications. Genomics Proteomics Bioinform. 13(5), 278–289 (2015).  https://doi.org/10.1016/J.GPB.2015.08.002CrossRefGoogle Scholar
  83. 83.
    Rubert, D.P., Feijão, P., Braga, M.D.V., Stoye, J., Martinez, F.H.V.: Approximating the DCJ distance of balanced genomes in linear time. Algorithm Mol. Biol 12(1), 3 (2017).  https://doi.org/10.1186/s13015-017-0095-y. http://almob.biomedcentral.com/articles/10.1186/s13015-017-0095-y
  84. 84.
    Rubert, D.P., Hoshino, E.A., Braga, M.D.V., Stoye, J., Martinez, F.V.: Computing the family-free DCJ similarity. BMC Bioinform. 19(S6), 152 (2018).  https://doi.org/10.1186/s12859-018-2130-5. https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-018-2130-5
  85. 85.
    Sankoff, D.: Edit distance for genome comparison based on non-local operations. In: Apostolico, A., Crochemore, M., Galil, Z., Manber, U. (eds.) Proceedings of the Combinatorial Pattern Matching, pp. 121–135. Springer, Berlin, Heidelberg (1992)CrossRefGoogle Scholar
  86. 86.
  87. 87.
    Sankoff, D., Leduc, G., Antoine, N., Paquin, B., Lang, B.F., Cedergren, R.: Gene order comparisons for phylogenetic inference: evolution of the mitochondrial genome. Proc. Natl. Acad. Sci. USA 89(14), 6575–6579 (1992)CrossRefGoogle Scholar
  88. 88.
    Scherthan, H., Cremer, T., Arnason, U., Weier, H.U., Lima-de Faria, A., Frönicke, L.: Comparative chromosome painting discloses homologous segments in distantly related mammals. Nat. Genet. 6(4), 342 (1994)CrossRefGoogle Scholar
  89. 89.
    Schwarz, R.F., Ng, C.K.Y., Cooke, S.L., Newman, S., Temple, J., Piskorz, A.M., Gale, D., Sayal, K., Murtaza, M., Baldwin, P.J., Rosenfeld, N., Earl, H.M., Sala, E., Jimenez-Linan, M., Parkinson, C.A., Markowetz, F., Brenton, J.D.: Spatial and temporal heterogeneity in high-grade serous ovarian cancer: a phylogenetic analysis. PLoS Med. 12(2), e1001789 (2015).  https://doi.org/10.1371/journal.pmed.1001789. http://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1001789CrossRefGoogle Scholar
  90. 90.
    Schwarz, R.F., Trinh, A., Sipos, B., Brenton, J.D., Goldman, N., Markowetz, F.: Phylogenetic quantification of intra-tumour heterogeneity. PLoS Comput. Biol. 10(4), e1003535 (2014).  https://doi.org/10.1371/journal.pcbi.1003535. http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003535CrossRefGoogle Scholar
  91. 91.
    Shao, M., Lin, Y.: Approximating the edit distance for genomes with duplicate genes under DCJ, insertion and deletion. BMC Bioinform. 13(Suppl 19), S13 (2012).  https://doi.org/10.1186/1471-2105-13-S19-S13. http://www.biomedcentral.com/1471-2105/13/S19/S13
  92. 92.
    Shao, M., Lin, Y., Moret, B.M.: An exact algorithm to compute the double-cut-and-join distance for genomes with duplicate genes. J. Comput. Biol. 22(5), 425–435 (2015).  https://doi.org/10.1089/cmb.2014.0096. http://online.liebertpub.com/doi/10.1089/cmb.2014.0096MathSciNetCrossRefGoogle Scholar
  93. 93.
    Shao, M., Moret, B.M.: A fast and exact algorithm for the exemplar breakpoint distance. J. Comput. Biol. 23(5), 337–346 (2016).  https://doi.org/10.1089/cmb.2015.0193. http://online.liebertpub.com/doi/10.1089/cmb.2015.0193MathSciNetzbMATHCrossRefGoogle Scholar
  94. 94.
    Shao, M., Moret, B.M.: On computing breakpoint distances for genomes with duplicate genes. J. Comput. Biol. 24(6), 571–580 (2017).  https://doi.org/10.1089/cmb.2016.0149. http://online.liebertpub.com/doi/10.1089/cmb.2016.0149CrossRefGoogle Scholar
  95. 95.
    Shao, M., Moret, B.M.E.: Comparing genomes with rearrangements and segmental duplications. Bioinformatics 31(12), i329–i338 (2015).  https://doi.org/10.1093/bioinformatics/btv229. http://bioinformatics.oxfordjournals.org/content/31/12/i329.shortCrossRefGoogle Scholar
  96. 96.
    Shi, G., Zhang, L., Jiang, T.: MSOAR 2.0: incorporating tandem duplications into ortholog assignment based on genome rearrangement. BMC Bioinform. 11(1), 10 (2010).  https://doi.org/10.1186/1471-2105-11-10. http://www.biomedcentral.com/1471-2105/11/10
  97. 97.
    da Silva, P.H., Machado, R., Dantas, S., Braga, M.D.V.: Restricted DCJ-indel model: sorting linear genomes with DCJ and indels. BMC Bioinform. 13(Suppl 19), S14 (2012).  https://doi.org/10.1186/1471-2105-13-S19-S14. http://www.biomedcentral.com/1471-2105/13/S19/S14
  98. 98.
    da Silva, P.H., Machado, R., Dantas, S., Braga, M.D.V.: DCJ-indel and DCJ-substitution distances with distinct operation costs. Algorithm Mol. Biol 8(1), 21 (2013).  https://doi.org/10.1186/1748-7188-8-21. http://www.almob.org/content/8/1/21CrossRefGoogle Scholar
  99. 99.
    Strauss, S.H., Palmer, J.D., Howe, G.T., Doerksen, A.H.: Chloroplast genomes of two conifers lack a large inverted repeat and are extensively rearranged. Proc. Natl. Acad. Sci. USA 85(11), 3898–3902 (1988)CrossRefGoogle Scholar
  100. 100.
    Sturtevant, A.H., Dobzhansky, T.: Inversions in the third chromosome of wild races of drosophila pseudoobscura, and their use in the study of the history of the species. Proc. Natl. Acad. Sci. USA 22(7), 448–450 (1936)CrossRefGoogle Scholar
  101. 101.
    Suksawatchon, J., Lursinsap, C., Bodén, M.: Computing the reversal distance between genomes in the presence of multi-gene families via binary integer programming. J. Bioinform. Comput. Biol. 5(1), 117–33 (2007). http://www.ncbi.nlm.nih.gov/pubmed/17477494CrossRefGoogle Scholar
  102. 102.
    Tannier, E., Bergeron, A., Sagot, M.F.: Advances on sorting by reversals. Discrete Appl. Math. 155(6–7), 881–888 (2007).  https://doi.org/10.1016/J.DAM.2005.02.033. https://www.sciencedirect.com/science/article/pii/S0166218X06003751MathSciNetzbMATHCrossRefGoogle Scholar
  103. 103.
    Tannier, E., Zheng, C., Sankoff, D.: Multichromosomal median and halving problems under different genomic distances. BMC Bioinform. 10(1), 120 (2009).  https://doi.org/10.1186/1471-2105-10-120. http://www.biomedcentral.com/1471-2105/10/120
  104. 104.
    Tattini, L., D’Aurizio, R., Magi, A.: Detection of genomic structural variants from next-generation sequencing data. Frontiers Bioeng. Biotechnol. 3, 92 (2015).  https://doi.org/10.3389/fbioe.2015.00092. http://www.ncbi.nlm.nih.gov/pubmed/26161383, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4479793
  105. 105.
    Tesler, G.: Efficient algorithms for multichromosomal genome rearrangements. J. Comput. Syst. Sci. 65(3), 587–609 (2002).  https://doi.org/10.1016/S0022-0000(02)00011-9MathSciNetzbMATHCrossRefGoogle Scholar
  106. 106.
    Tesler, G.: GRIMM: genome rearrangements web server. Bioinformatics 18(3), 492–493 (2002).  https://doi.org/10.1093/bioinformatics/18.3.492. http://bioinformatics.oxfordjournals.org/content/18/3/492.abstractMathSciNetCrossRefGoogle Scholar
  107. 107.
    Urban, A.E., Korbel, J.O., Selzer, R., Richmond, T., Hacker, A., Popescu, G.V., Cubells, J.F., Green, R., Emanuel, B.S., Gerstein, M.B., Weissman, S.M., Snyder, M.: High-resolution mapping of DNA copy alterations in human chromosome 22 using high-density tiling oligonucleotide arrays. Proc. Natl. Acad. Sci. USA 103(12), 4534–9 (2006).  https://doi.org/10.1073/pnas.0511340103. http://www.pnas.org/content/103/12/4534.fullCrossRefGoogle Scholar
  108. 108.
    Voet, T., Kumar, P., Van Loo, P., Cooke, S.L., Marshall, J., Lin, M.L., Zamani Esteki, M., Van der Aa, N., Mateiu, L., McBride, D.J., Bignell, G.R., McLaren, S., Teague, J., Butler, A., Raine, K., Stebbings, L.A., Quail, M.A., DHooghe, T., Moreau, Y., Futreal, P.A., Stratton, M.R., Vermeesch, J.R., Campbell, P.J.: Single-cell paired-end genome sequencing reveals structural variation per cell cycle. Nucleic Acids Res. 41(12), 6119–6138 (2013).  https://doi.org/10.1093/nar/gkt345CrossRefGoogle Scholar
  109. 109.
    Vogelstein, B., Papadopoulos, N., Velculescu, V.E., Zhou, S., Diaz, L.A., Kinzler, K.W.: Cancer genome landscapes. Science 339(6127), 1546–58 (2013).  https://doi.org/10.1126/science.1235122. http://www.ncbi.nlm.nih.gov/pubmed/23539594, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3749880CrossRefGoogle Scholar
  110. 110.
    Wang, Y., Waters, J., Leung, M.L., Unruh, A., Roh, W., Shi, X., Chen, K., Scheet, P., Vattathil, S., Liang, H., Multani, A., Zhang, H., Zhao, R., Michor, F., Meric-Bernstam, F., Navin, N.E.: Clonal evolution in breast cancer revealed by single nucleus genome sequencing. Nature 512, 155 (2014).  https://doi.org/10.1038/nature13600CrossRefGoogle Scholar
  111. 111.
    Warren, R., Sankoff, D.: Genome halving with double cut and join. J. Comput. Biol. 7(2), 357–371 (2009)Google Scholar
  112. 112.
    Warren, R., Sankoff, D.: Genome aliquoting revisited. J. Comput. Biol. 18(9), 1065–1075 (2011). http://online.liebertpub.com/doi/abs/10.1089/cmb.2011.0087MathSciNetCrossRefGoogle Scholar
  113. 113.
    Willing, E., Zaccaria, S., Braga, M.D., Stoye, J.: On the inversion-indel distance. BMC Bioinform. 14(Suppl 15), S3 (2013)CrossRefGoogle Scholar
  114. 114.
    Wolfe, K.H., Shields, D.C.: Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387, 708 (1997).  https://doi.org/10.1038/42711CrossRefGoogle Scholar
  115. 115.
    Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations by translocation, inversion and block interchange. Bioinformatics 21(16), 3340–3346 (2005).  https://doi.org/10.1093/bioinformatics/bti535CrossRefGoogle Scholar
  116. 116.
    Yancopoulos, S., Friedberg, R.: DCJ path formulation for genome transformations which include insertions, deletions, and duplications. J. Comput. Biol. 16(10), 1311–38 (2009).  https://doi.org/10.1089/cmb.2009.0092. http://www.ncbi.nlm.nih.gov/pubmed/19803734MathSciNetCrossRefGoogle Scholar
  117. 117.
    Yin, Z., Tang, J., Schaeffer, S.W., Bader, D.A.: Exemplar or matching: modeling DCJ problems with unequal content genome data. J. Comb. Optim. (2015).  https://doi.org/10.1007/s10878-015-9940-4. http://link.springer.com/10.1007/s10878-015-9940-4MathSciNetzbMATHCrossRefGoogle Scholar
  118. 118.
    Zaccaria, S., El-Kebir, M., Klau, G.W., Raphael, B.J.: Phylogenetic copy-number factorization of multiple tumor samples. J. Comput. Biol. (2018).  https://doi.org/10.1089/cmb.2017.0253. http://www.liebertpub.com/doi/10.1089/cmb.2017.0253MathSciNetCrossRefGoogle Scholar
  119. 119.
    Zakov, S., Bafna, V.: Reconstructing breakage fusion bridge architectures using noisy copy numbers. J. Comput. Biol. 22(6), 577–594 (2015).  https://doi.org/10.1089/cmb.2014.0166. http://online.liebertpub.com/doi/10.1089/cmb.2014.0166MathSciNetCrossRefGoogle Scholar
  120. 120.
    Zakov, S., Kinsella, M., Bafna, V.: An algorithmic approach for breakage-fusion-bridge detection in tumor genomes. Proc. Natl. Acad. Sci. USA 110(14), 5546–51 (2013).  https://doi.org/10.1073/pnas.1220977110. http://www.pnas.org/content/110/14/5546.fullMathSciNetCrossRefGoogle Scholar
  121. 121.
    Zeira, R., Shamir, R.: Sorting by cuts, joins, and whole chromosome duplications. J. Comput. Biol. 24(2), 127–137 (2017).  https://doi.org/10.1089/cmb.2016.0045. http://online.liebertpub.com/doi/10.1089/cmb.2016.0045, http://www.ncbi.nlm.nih.gov/pubmed/27704866MathSciNetzbMATHCrossRefGoogle Scholar
  122. 122.
    Zeira, R., Shamir, R.: Sorting cancer karyotypes using double-cut-and-joins, duplications and deletions. Bioinformatics (2018).  https://doi.org/10.1093/bioinformatics/bty381. https://academic.oup.com/bioinformatics/advance-article/doi/10.1093/bioinformatics/bty381/4992148
  123. 123.
    Zeira, R., Zehavi, M., Shamir, R.: A linear-time algorithm for the copy number transformation problem. J. Comput. Biol. 24(12), 1179–1194 (2017).  https://doi.org/10.1089/cmb.2017.0060. http://online.liebertpub.com/doi/10.1089/cmb.2017.0060MathSciNetzbMATHCrossRefGoogle Scholar
  124. 124.
    Zerbino, D.R., Ballinger, T., Paten, B., Hickey, G., Haussler, D.: Representing and decomposing genomic structural variants as balanced integer flows on sequence graphs. BMC Bioinform. 17(1), 400 (2016).  https://doi.org/10.1186/s12859-016-1258-4. http://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-016-1258-4
  125. 125.
    Zheng, C., Zhu, Q., Sankoff, D.: Genome halving with an outgroup. Evol. Bioinform. Online 2, 295–302 (2007). http://www.ncbi.nlm.nih.gov/pubmed/19455223, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2674651CrossRefGoogle Scholar
  126. 126.
    Zimao, L., Lusheng, W., Kaizhong, Z.: Algorithmic approaches for genome rearrangement: a review. IEEE Trans. Sys. Man Cybern., Part C (Applications and Reviews) 36(5), 636–648 (2006).  https://doi.org/10.1109/TSMCC.2005.855522. http://ieeexplore.ieee.org/document/1678038/CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Tel Aviv UniversirtyTel AvivIsrael

Personalised recommendations