Advertisement

Nanoparticles for Biosensing

  • Pouria Sarihi
  • Armin Azadkhah Shalmani
  • Vida Araban
  • Mohammad RaoufiEmail author
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 104)

Abstract

In spite of all advances made in medical intervention over the past few decades, efficient curing of many diseases such as diabetes, Alzheimer’s disease, cardiovascular disease, cancer disease etc. has remained a challenge (Bast 2004). Delayed onset of treatment is one of the main contributors to the failure in treating these diseases to a satisfactory extent.

References

  1. Antosiewicz, A., Senkara, E., Cieśla, J.: Quartz crystal microbalance with dissipation and microscale thermophoresis as tools for investigation of protein complex formation between thymidylate synthesis cycle enzymes. Biosens. Bioelectron. 64, 36–42 (2015)CrossRefGoogle Scholar
  2. Arnold, M.A., Meyerhoff, M.E.: Recent advances in the development and analytical applications of biosensing probes. Crit. Rev. Anal. Chem. 20(3), 149–196 (1988)CrossRefGoogle Scholar
  3. Barhoumi, H., Maaref, A., Rammah, M., Martelet, C., Jaffrezic, N., Mousty, C., Vial, S., Forano, C.: Urea biosensor based on Zn3Al–urease layered double hydroxides nanohybrid coated on insulated silicon structures. Mater. Sci. Eng. C 26(2–3), 328–333 (2006)CrossRefGoogle Scholar
  4. Bast, R.C., Jr.: Early detection of ovarian cancer: new technologies in pursuit of a disease that is neither common nor rare. Trans. Am. Clin. Climatol. Assoc. 115, 233–247 (2004); discussion 247–248Google Scholar
  5. Belkin, S.: Microbial whole-cell sensing systems of environmental pollutants. Curr. Opin. Microbiol. 6(3), 206–212 (2003)CrossRefGoogle Scholar
  6. Bertozzi, C.R., Kiessling, L.L.: Chemical glycobiology. Science 291(5512), 2357–2364 (2001)CrossRefGoogle Scholar
  7. Cardullo, F., Diederich, F., Echegoyen, L., Habicher, T., Jayaraman, N., Leblanc, R.M., Stoddart, J.F., Wang, S.: Stable langmuir and langmuir–blodgett films of fullerene–glycodendron conjugates. Langmuir 14(8), 1955–1959 (1998)CrossRefGoogle Scholar
  8. Cass, A.E., Davis, G., Francis, G.D., Hill, H.A.O., Aston, W.J., Higgins, I.J., Plotkin, E.V., Scott, L.D., Turner, A.P.: Ferrocene-mediated enzyme electrode for amperometric determination of glucose. Anal. Chem. 56(4), 667–671 (1984)CrossRefGoogle Scholar
  9. Chakrabarti, R., Klibanov, A.M.: Nanocrystals modified with peptide nucleic acids (PNAs) for selective self-assembly and DNA detection. J. Am. Chem. Soc. 125(41), 12531–12540 (2003)CrossRefGoogle Scholar
  10. Chambers, J.P., Arulanandam, B.P., Matta, L.L., Weis, A., Valdes, J.J.: Biosensor recognition elements. Texas University at San Antonio Department of Biology (2008)Google Scholar
  11. Clark, L.C., Lyons, C.: Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N. Y. Acad. Sci. 102(1), 29–45 (1962)CrossRefGoogle Scholar
  12. Damborský, P., Švitel, J., Katrlík, J.: Optical biosensors. Essays Biochem. 60(1), 91–100 (2016)CrossRefGoogle Scholar
  13. Davis, F., Higson, S.P.: Structured thin films as functional components within biosensors. Biosens. Bioelectron. 21(1), 1–20 (2005)CrossRefGoogle Scholar
  14. Demidov, V.V., Potaman, V.N., Frank-Kamenetskil, M., Egholm, M., Buchard, O., Sönnichsen, S.H., Nlelsen, P.E.: Stability of peptide nucleic acids in human serum and cellular extracts. Biochem. Pharmacol. 48(6), 1310–1313 (1994)CrossRefGoogle Scholar
  15. Drafts, B.: Acoustic wave technology sensors. IEEE Trans. Microw. Theory Tech. 49(4), 795–802 (2001)CrossRefGoogle Scholar
  16. Durmuş, N.G., Lin, R.L., Kozberg, M., Dermici, D., Khademhosseini, A., Demirci, U.: Acoustic-based biosensors. In: Encyclopedia of Microfluidics and Nanofluidics, pp. 28–40. SpringerGoogle Scholar
  17. Eggins, B.R.: Chemical Sensors and Biosensors. Wiley (2008)Google Scholar
  18. Egholm, M., Buchardt, O., Christensen, L., Behrens, C., Freier, S.M., Driver, D.A., Berg, R.H., Kim, S.K., Norden, B., Nielsen, P.E.: PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen-bonding rules. Nature 365(6446), 566 (1993)CrossRefGoogle Scholar
  19. Ellington, A.D., Szostak, J.W.: In vitro selection of RNA molecules that bind specific ligands. Nature 346(6287), 818 (1990)CrossRefGoogle Scholar
  20. Ersöz, A., Denizli, A., Özcan, A., Say, R.: Molecularly imprinted ligand-exchange recognition assay of glucose by quartz crystal microbalance. Biosens. Bioelectron. 20(11), 2197–2202 (2005)CrossRefGoogle Scholar
  21. Estevez, M.C., Otte, M.A., Sepulveda, B., Lechuga, L.M.: Trends and challenges of refractometric nanoplasmonic biosensors: a review. Anal. Chim. Acta 806, 55–73 (2014)CrossRefGoogle Scholar
  22. Fant, C., Sott, K., Elwing, H., Hook, F.: Adsorption behavior and enzymatically or chemically induced cross-linking of a mussel adhesive protein. Biofouling 16(2–4), 119–132 (2000)CrossRefGoogle Scholar
  23. Fogel, R., Limson, J., Seshia, A.A.: Acoustic biosensors. Essays Biochem. 60(1), 101–110 (2016)CrossRefGoogle Scholar
  24. Freire, R.S., Pessoa, C.A., Mello, L.D., Kubota, L.T.: Direct electron transfer: an approach for electrochemical biosensors with higher selectivity and sensitivity. J. Braz. Chem. Soc. 14(2), 230–243 (2003)CrossRefGoogle Scholar
  25. Gemeiner, P., Dočolomanský, P., Vikartovská, A., Štefuca, V.: Amplification of flow-microcalorimetry signal by means of multiple bioaffinity layering of lectin and glycoenzyme. Biotechnol. Appl. Biochem. 28(2), 155–161 (1998)Google Scholar
  26. Guilbault, G.G., Lubrano, G.J.: An enzyme electrode for the amperometric determination of glucose. Anal. Chim. Acta 64(3), 439–455 (1973)CrossRefGoogle Scholar
  27. Gruhl, F.J., Rapp, B.E., Lange, K.: Biosensors for diagnostic applications. Adv. Biochem. Eng. Biotechnol. 133, 115–148 (2013)Google Scholar
  28. Hammond, J.L., Formisano, N., Estrela, P., Carrara, S., Tkac, J.: Electrochemical biosensors and nanobiosensors. Essays Biochem. 60(1), 69–80 (2016)CrossRefGoogle Scholar
  29. Harris, L.J., Larson, S.B., Hasel, K.W., McPherson, A.: Refined structure of an intact IgG2a monoclonal antibody. Biochemistry 36(7), 1581–1597 (1997)CrossRefGoogle Scholar
  30. Hesselberth, J.R., Robertson, M.P., Knudsen, S.M., Ellington, A.D.: Simultaneous detection of diverse analytes with an aptazyme ligase array. Anal. Biochem. 312(2), 106–112 (2003)CrossRefGoogle Scholar
  31. Jayasena, S.D.: Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin. Chem. 45(9), 1628–1650 (1999)Google Scholar
  32. Jianrong, C., Yuqing, M., Nongyue, H., Xiaohua, W., Sijiao, L.: Nanotechnology and biosensors. Biotechnol. Adv. 22(7), 505–518 (2004)CrossRefGoogle Scholar
  33. Justino, C.I., Gomes, A.R., Freitas, A.C., Duarte, A.C., Rocha-Santos, T.A.: Graphene based sensors and biosensors. TrAC Trends Anal. Chem. 91, 53–66 (2017)CrossRefGoogle Scholar
  34. Kaspar, M., Stadler, H., Weiss, T., Ziegler, C.: Thickness shear mode resonators (“mass-sensitive devices”) in bioanalysis. Fresenius’ J. Anal. Chem. 366(6–7), 602–610 (2000)CrossRefGoogle Scholar
  35. Kim, B., Cha, G.S., Meyerhoff, M.E.: Homogeneous enzyme-linked binding assay for studying the interaction of lectins with carbohydrates and glycoproteins. Anal. Chem. 62(24), 2663–2668 (1990)CrossRefGoogle Scholar
  36. Kirsch, J., Siltanen, C., Zhou, Q., Revzin, A., Simonian, A.: Biosensor technology: recent advances in threat agent detection and medicine. Chem. Soc. Rev. 42(22), 8733–8768 (2013)CrossRefGoogle Scholar
  37. Koh, I., Josephson, L.: Magnetic nanoparticle sensors. Sensors 9(10), 8130–8145 (2009)CrossRefGoogle Scholar
  38. Länge, K., Rapp, B.E., Rapp, M.: Surface acoustic wave biosensors: a review. Anal. Bioanal. Chem. 391(5), 1509–1519 (2008)CrossRefGoogle Scholar
  39. Lec, R.M., Lewin, P.A.: Acoustic wave biosensors. In: Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE (1998)Google Scholar
  40. Lim, D.V., Simpson, J.M., Kearns, E.A., Kramer, M.F.: Current and developing technologies for monitoring agents of bioterrorism and biowarfare. Clin. Microbiol. Rev. 18(4), 583–607 (2005)CrossRefGoogle Scholar
  41. Lin, Z., Yip, C.M., Joseph, I.S., Ward, M.D.: Operation of an ultrasensitive 30-MHz quartz crystal microbalance in liquids. Anal. Chem. 65(11), 1546–1551 (1993)CrossRefGoogle Scholar
  42. Luzi, E., Minunni, M., Tombelli, S., Mascini, M.: New trends in affinity sensing: aptamers for ligand binding. TrAC Trends Anal. Chem. 22(11), 810–818 (2003)CrossRefGoogle Scholar
  43. Marks, R.S., Cullen, D.C., Karube, I., Lowe, C.R., Weetall, H.H.: Handbook of Biosensors and Biochips. Wiley (2007)Google Scholar
  44. McGill, R.A., Chung, R., Chrisey, D.B., Dorsey, P.C., Matthews, P., Piqué, A., Mlsna, T.E., Stepnowski, J.L.: Performance optimization of surface acoustic wave chemical sensors. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45(5), 1370–1380 (1998)CrossRefGoogle Scholar
  45. Milstein, L., Das, P.: Spread spectrum receiver using surface acoustic wave technology. IEEE Trans. Commun. 25(8), 841–847 (1977)CrossRefGoogle Scholar
  46. Miyajima, K., Koshida, T., Arakawa, T., Kudo, H., Saito, H., Yano, K., Mitsubayashi, K.: Fibre-optic fluoroimmunoassay system with a flow-through cell for rapid on-site determination of Escherichia coli O157: H7 by monitoring fluorescence dynamics. Biosensors 3(1), 120–131 (2013)CrossRefGoogle Scholar
  47. Nagase, T., Nakata, E., Shinkai, S., Hamachi, I.: Construction of artificial signal transducers on a lectin surface by post-photoaffinity-labeling modification for fluorescent saccharide biosensors. Chem. Eur. J. 9(15), 3660–3669 (2003)CrossRefGoogle Scholar
  48. Nikoleli, G.-P., Karapetis, S., Bratakou, S., Nikolelis, D.P., Tzamtzis, N., Psychoyios, V.N.: Graphene-based electrochemical biosensors: new trends and applications. Intell. Nanomater., 427–448 (2016)Google Scholar
  49. Özalp, V.C.: Acoustic quantification of ATP using a quartz crystal microbalance with dissipation. Analyst 136(23), 5046–5050 (2011)CrossRefGoogle Scholar
  50. Ramanathan, K., Danielsson, B.: Principles and applications of thermal biosensors. Biosens. Bioelectron. 16(6), 417–423 (2001)CrossRefGoogle Scholar
  51. Ramanathan, K., Rank, M., Svitel, J., Dzgoev, A., Danielsson, B.: The development and applications of thermal biosensors for bioprocess monitoring. Trends Biotechnol. 17(12), 499–505 (1999)CrossRefGoogle Scholar
  52. Rasooly, A., Herold, K.: Biosensors and Biodetection: Methods and Protocols Volume 1: Optical-Based Detectors (Methods in Molecular Biology). Humana Press (2008)Google Scholar
  53. Safina, G.: Application of surface plasmon resonance for the detection of carbohydrates, glycoconjugates, and measurement of the carbohydrate-specific interactions: a comparison with conventional analytical techniques. A critical review. Anal. Chim. Acta 712, 9–29 (2012)CrossRefGoogle Scholar
  54. Sano, T., Smith, C.L., Cantor, C.R.: Immuno-PCR: very sensitive antigen detection by means of specific antibody-DNA conjugates. Science 258(5079), 120–122 (1992)CrossRefGoogle Scholar
  55. Shimizu, Y., Morita, K.: Microhole array electrode as a glucose sensor. Anal. Chem. 62(14), 1498–1501 (1990)CrossRefGoogle Scholar
  56. Subrahmanyam, S., Piletsky, S.A., Turner, A.P.: Application of natural receptors in sensors and assays. Anal. Chem. 74(16), 3942–3951 (2002)CrossRefGoogle Scholar
  57. Tuerk, C., Gold, L.: Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249(4968), 505–510 (1990)CrossRefGoogle Scholar
  58. Valdes, J., Rogers, K., Eldefrawi, M.: Detection of natural toxins by an acetylcholine receptor optical sensor. In: 156th National Meeting of the American Association for the Advancement of Science (1990)Google Scholar
  59. Valdes, J., Wall Jr., J., Chambers, J., Eldefrawi, M.: A receptor-based capacitive biosensor. Johns Hopkins APL Tech. Digest. 9(1), 4–9 (1988)Google Scholar
  60. Vogt, B.D., Lin, E.K., Wu, W.-L., White, C.C.: Effect of film thickness on the validity of the Sauerbrey equation for hydrated polyelectrolyte films. J. Phys. Chem. B 108(34), 12685–12690 (2004)CrossRefGoogle Scholar
  61. Voinova, M., Jonson, M., Kasemo, B.: ‘Missing mass’ effect in biosensor’s QCM applications. Biosens. Bioelectron. 17(10), 835–841 (2002)CrossRefGoogle Scholar
  62. Waggoner, P.S., Craighead, H.G.: Micro-and nanomechanical sensors for environmental, chemical, and biological detection. Lab Chip 7(10), 1238–1255 (2007)CrossRefGoogle Scholar
  63. Wang, J.: Nanomaterial-based electrochemical biosensors. Analyst 130(4), 421–426 (2005)CrossRefGoogle Scholar
  64. Wang, R., Zhao, J., Jiang, T., Kwon, Y.M., Lu, H., Jiao, P., Liao, M., Li, Y.: Selection and characterization of DNA aptamers for use in detection of avian influenza virus H5N1. J. Virol. Methods 189(2), 362–369 (2013)CrossRefGoogle Scholar
  65. Wessa, T., Barié, N., Rapp, M., Ache, H.: Polyimide, a new shielding layer for sensor applications. Sensors and Actuators B: Chemical 53(1–2), 63–68 (1998)CrossRefGoogle Scholar
  66. Wilson, G.S., Gifford, R.: Biosensors for real-time in vivo measurements. Biosens. Bioelectron. 20(12), 2388–2403 (2005)CrossRefGoogle Scholar
  67. Wilson, J.S.: Sensor Technology Handbook. Elsevier (2004)Google Scholar
  68. Wong, N.K., Kanu, N., Thandrayen, N., Rademaker, G.J., Baldwin, C.I., Renouf, D.V., Hounsell, E.F.: Microassay analyses of protein glycosylation. In: The Protein Protocols Handbook, pp. 841–850. SpringerGoogle Scholar
  69. Yanagawa, H.: Design of generic biosensors based on green fluorescent proteins with allosteric sites by directed evolution. FEBS Lett. 453(3), 305–307 (1999)CrossRefGoogle Scholar
  70. Yoshikawa, K., Omochi, T.: Chemical sensing by a novel electrical oscillator: detection and quantitation of polysaccharides in concanavalin a solutions. Biochem. Biophys. Res. Commun. 137(3), 978–983 (1986)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Pouria Sarihi
    • 1
  • Armin Azadkhah Shalmani
    • 2
  • Vida Araban
    • 1
  • Mohammad Raoufi
    • 1
    Email author
  1. 1.Faculty of PharmacyNanotechnology Research Center, Tehran University of Medical SciencesTehranIran
  2. 2.Faculty of PharmacyTehran University of Medical SciencesTehranIran

Personalised recommendations