Hydroxyapatite for Biomedicine and Drug Delivery
Chapter
First Online:
Abstract
Hydroxyapatite (HA) is a member of the calcium phosphates family (Table 1) and like the other ones is known as a bioceramic with specific advantages raise from chemical similarity to the mammalian inorganic structure. In comparison to other CaPs, HA has highest thermodynamic stability and solubility (after Fluorapatite) in physiological conditions.
References
- Agarwalla, A., Puzzitiello, R., Garcia, G.H., Forsythe, B.: Application of a beta-tricalcium phosphate graft to minimize bony defect in bone–patella tendon–bone anterior cruciate ligament reconstruction. Arthrosc. Techn. 7, e725 (2018)CrossRefGoogle Scholar
- Ahn, E.S., Gleason, N.J., Nakahira, A., Ying, J.Y.: Nanostructure processing of hydroxyapatite-based bioceramics. Nano Lett. 1(3), 149–153 (2001)CrossRefGoogle Scholar
- Akram, M., Ahmed, R., Shakir, I., Ibrahim, W.A.W., Hussain, R.: Extracting hydroxyapatite and its precursors from natural resources. J. Mater. Sci. 49(4), 1461–1475 (2014)CrossRefGoogle Scholar
- Almeida, A.L., Martins, J.B.L., Taft, C.A., Longo, E., Andres, J., Lie, S.K.: A PM3 theoretical study of the adsorption and dissociation of water on MgO surfaces. J. Mol. Struct. (Thoechem.) 426(1–3), 199–205 (1998)CrossRefGoogle Scholar
- Antony, G.J.M., Aruna, S., Raja, S.: Enhanced mechanical properties of acrylate based shape memory polymer using grafted hydroxyapatite. J. Polym. Res. 25(5), 120 (2018)CrossRefGoogle Scholar
- Awwad, N., Alshahrani, A., Saleh, K., Hamdy, M.: A novel method to improve the anticancer activity of natural-based hydroxyapatite against the liver cancer cell line HepG2 using mesoporous magnesia as a micro-carrier. Molecules 22(12), 1947 (2017)CrossRefGoogle Scholar
- Azarpazhooh, A., Limeback, H.: Clinical efficacy of casein derivatives: a systematic review of the literature. J. Am. Dent. Assoc. 139(7), 915–924 (2008)CrossRefGoogle Scholar
- Bamrungsap, S., Zhao, Z., Chen, T., Wang, L., Li, C., Fu, T., Tan, W.: Nanotechnology in therapeutics: a focus on nanoparticles as a drug delivery system. Nanomedicine 7(8), 1253–1271 (2012)CrossRefGoogle Scholar
- Bansal, M., Mittal, N., Yadav, S.K., Khan, G., Gupta, P., Mishra, B., Nath, G.: Periodontal thermoresponsive, mucoadhesive dual antimicrobial loaded in-situ gel for the treatment of periodontal disease: preparation, in-vitro characterization and antimicrobial study. J. Oral Biol. Craniofacial Res. 8(2), 126–133 (2018)CrossRefGoogle Scholar
- Barakat, N.A.M., Khil, M.S., Omran, A.M., Sheikh, F.A., Kim, H.Y.: Extraction of pure natural hydroxyapatite from the bovine bones bio waste by three different methods. J. Mater. Process. Technol. 209(7), 3408–3415 (2009)CrossRefGoogle Scholar
- Batchelar, D.L., Davidson, M.T.M., Dabrowski, W., Cunningham, I.A.: Bone-composition imaging using coherent-scatter computed tomography: assessing bone health beyond bone mineral density. Med. Phys. 33(4), 904–915 (2006)CrossRefGoogle Scholar
- Besinis, A., De Peralta, T., Tredwin, C.J., Handy, R.D.: Review of nanomaterials in dentistry: interactions with the oral microenvironment, clinical applications, hazards, and benefits. ACS Nano 9(3), 2255–2289 (2015)CrossRefGoogle Scholar
- Best, S., Porter, A., Thian, E., Huang, J.: Bioceramics: past, present and for the future. J. Eur. Ceram. Soc. 28(7), 1319–1327 (2008)CrossRefGoogle Scholar
- Bian, S.-W., Baltrusaitis, J., Galhotra, P., Grassian, V.H.: A template-free, thermal decomposition method to synthesize mesoporous MgO with a nanocrystalline framework and its application in carbon dioxide adsorption. J. Mater. Chem. 20(39), 8705 (2010)CrossRefGoogle Scholar
- Bianco, A., Cacciotti, I., Lombardi, M., Montanaro, L.: Si-substituted hydroxyapatite nanopowders: synthesis, thermal stability and sinterability. Mater. Res. Bull. 44(2), 345–354 (2009)CrossRefGoogle Scholar
- Bose, S., Banerjee, A., Dasgupta, S., Bandyopadhyay, A.: Synthesis, processing, mechanical, and biological property characterization of hydroxyapatite whisker-reinforced hydroxyapatite composites. J. Am. Ceram. Soc. 92(2), 323–330 (2009)CrossRefGoogle Scholar
- Bose, S., Dasgupta, S., Tarafder, S., Bandyopadhyay, A.: Microwave-processed nanocrystalline hydroxyapatite: simultaneous enhancement of mechanical and biological properties. Acta Biomater. 6(9), 3782–3790 (2010)CrossRefGoogle Scholar
- Cai, Y., Liu, Y., Yan, W., Hu, Q., Tao, J., Zhang, M., Shi, Z., Tang, R.: Role of hydroxyapatite nanoparticle size in bone cell proliferation. J. Mater. Chem. 17(36), 3780–3787 (2007)CrossRefGoogle Scholar
- Cai, J., Palamara, J., Manton, D., Burrow, M.: Status and progress of treatment methods for root caries in the last decade: a literature review. Aust. Dent. J. 63(1), 34–54 (2018)CrossRefGoogle Scholar
- Carrodeguas, R.G., De Aza, S.: α-Tricalcium phosphate: synthesis, properties and biomedical applications. Acta Biomater. 7(10), 3536–3546 (2011)CrossRefGoogle Scholar
- Chakraborty, R., Seesala, V.S., Sen, M., Sengupta, S., Dhara, S., Saha, P., Das, K., Das, S.: MWCNT reinforced bone like calcium phosphate—Hydroxyapatite composite coating developed through pulsed electrodeposition with varying amount of apatite phase and crystallinity to promote superior osteoconduction, cytocompatibility and corrosion protection performance compared to bare metallic implant surface. Surf. Coat. Technol. 325, 496–514 (2017)CrossRefGoogle Scholar
- Chan, W.C.W., Khademhosseini, A., Parak, W., Weiss, P.S.: Cancer: nanoscience and nanotechnology approaches. ACS Nano 11(5), 4375–4376 (2017)CrossRefGoogle Scholar
- Chen, Q., Cao, L., Wang, J., Jiang, L., Zhao, H., Yishake, M., Ma, Y., Zhou, H., Lin, H., Dong, J., Fan, Z.: Bioinspired modification of poly(L-lactic acid)/nano-sized beta-tricalcium phosphate composites with gelatin/hydroxyapatite coating for enhanced osteointegration and osteogenesis (2018). 1550-7033 (Print)Google Scholar
- Chen, D.Z., Tang, C.Y., Chan, K.C., Tsui, C.P., Yu, P.H.F., Leung, M.C.P., Uskokovic, P.S.: Dynamic mechanical properties and in vitro bioactivity of PHBHV/HA nanocomposite. Compos. Sci. Technol. 67(7), 1617–1626 (2007)CrossRefGoogle Scholar
- Chen, Y., Huang, Z., Li, X., Li, S., Zhou, Z., Zhang, Y., Feng, Q.L., Yu, B.: In vitro biocompatibility and osteoblast differentiation of an injectable Chitosan/Nano-Hydroxyapatite/Collagen scaffold. J. Nanomater. 2012, 6 (2012)Google Scholar
- Cui, H., Wu, X., Chen, Y., Boughton, R.I.: Synthesis and characterization of mesoporous MgO by template-free hydrothermal method. Mater. Res. Bull. 50, 307–311 (2014)CrossRefGoogle Scholar
- De Groot, K., Geesink, R., Klein, C., Serekian, P.: Plasma sprayed coatings of hydroxylapatite. J. Biomed. Mater. Res., Part A 21(12), 1375–1381 (1987)CrossRefGoogle Scholar
- Dhand, V., Rhee, K.Y., Park, S.-J.: The facile and low temperature synthesis of nanophase hydroxyapatite crystals using wet chemistry. Mater. Sci. Eng. C 36, 152–159 (2014)CrossRefGoogle Scholar
- Dong, Z., Li, Y., Zou, Q.: Degradation and biocompatibility of porous nano-hydroxyapatite/polyurethane composite scaffold for bone tissue engineering. Appl. Surf. Sci. 255(12), 6087–6091 (2009)CrossRefGoogle Scholar
- Dorozhkin, S.V.: Nanosized and nanocrystalline calcium orthophosphates. Acta Biomater. 6(3), 715–734 (2010)CrossRefGoogle Scholar
- Dorozhkin, S.V.: Calcium orthophosphate bioceramics. Ceram. Int. 41(10), 13913–13966 (2015)CrossRefGoogle Scholar
- Dorozhkin, S.V.: Self-setting Calcium Orthophosphate (CaPO4) Formulations. Developments and Applications of Calcium Phosphate Bone Cements, pp. 41–146. Springer, Singapore (2018)CrossRefGoogle Scholar
- Durgesh, B.H., Basavarajappa, S., Ramakrishnaiah, R., Al Kheraif, A.A., Divakar, D.D.: A review on microbiological cause of periodontal disease: disease and treatment. Rev. Med. Microbiol. 26(2), 53–58 (2015)CrossRefGoogle Scholar
- Elkassas, D., Arafa, A.: Remineralizing efficacy of different calcium-phosphate and fluoride based delivery vehicles on artificial caries like enamel lesions. J. Dent. 42(4), 466–474 (2014)CrossRefGoogle Scholar
- Elsabahy, M., Wooley, K.L.: Design of polymeric nanoparticles for biomedical delivery applications. Chem. Soc. Rev. 41(7), 2545 (2012)CrossRefGoogle Scholar
- Eriksson, M., Liu, Y., Hu, J., Gao, L., Nygren, M., Shen, Z.: Transparent hydroxyapatite ceramics with nanograin structure prepared by high pressure spark plasma sintering at the minimized sintering temperature. J. Eur. Ceram. Soc. 31(9), 1533–1540 (2011)CrossRefGoogle Scholar
- Etienne, D.: Locally delivered antimicrobials for the treatment of chronic periodontitis. Oral Dis. 9(s1), 45–50 (2003)CrossRefGoogle Scholar
- Faeda, R.S., Tavares, H.S., Sartori, R., Sartori, A.C., Marcantonio Jr., E.: Biological performance of chemical hydroxyapatite coating associated with implant surface modification by laser beam: biomechanical study in rabbit tibias (2009). 1531-5053 (Electronic)Google Scholar
- Fahami, A., Nasiri-Tabrizi, B., Ebrahimi-Kahrizsangi, R.: Mechanosynthesis and characterization of chlorapatite nanopowders. Mater. Lett. 110, 117–121 (2013)CrossRefGoogle Scholar
- Ferraz, M., Mateus, A., Sousa, J., Monteiro, F.: Nanohydroxyapatite microspheres as delivery system for antibiotics: release kinetics, antimicrobial activity, and interaction with osteoblasts. J. Biomed. Mater. Res., Part A 81(4), 994–1004 (2007)CrossRefGoogle Scholar
- Fu, L.-H., Chao, Q., Liu, Y.-J., Cao, W.-T., Ma, M.-G.: Sonochemical synthesis of cellulose/hydroxyapatite nanocomposites and their application in protein adsorption. Sci. Rep. 8(1) (2018)Google Scholar
- Furko, M., Havasi, V., Kónya, Z., Grünewald, A., Detsch, R., Boccaccini, A.R., Balázsi, C.: Development and characterization of multi-element doped hydroxyapatite bioceramic coatings on metallic implants for orthopedic applications. Boletín de la Sociedad Española de Cerámica y Vidrio 57(2), 55–65 (2018)CrossRefGoogle Scholar
- Furlong, R., Osborn, J.: Fixation of hip prostheses by hydroxyapatite ceramic coatings. Bone Joint J. 73(5), 741–745 (1991)Google Scholar
- Furukawa, T., Matsusue, Y., Yasunaga, T., Nakagawa, Y., Okada, Y., Shikinami, Y., Okuno, M., Nakamura, T.: Histomorphometric study on high-strength hydroxyapatite/poly(L-lactide) composite rods for internal fixation of bone fractures. J. Biomed. Mater. Res. 50(3), 410–419 (2000)CrossRefGoogle Scholar
- Gauthier, O., Bouler, J.M., Weiss, P., Bosco, J., Aguado, E., Daculsi, G.: Short-term effects of mineral particle sizes on cellular degradation activity after implantation of injectable calcium phosphate biomaterials and the consequences for bone substitution. Bone 25(2), 71S–74S (1999)CrossRefGoogle Scholar
- Gholizadeh, B.S., Buazar, F., Hosseini, S.M., Mousavi, S.M.: Enhanced antibacterial activity, mechanical and physical properties of alginate/hydroxyapatite bionanocomposite film (2018). 1879-0003 (Electronic)Google Scholar
- Giacomini, D., Torricelli, P., Gentilomi, G.A., Boanini, E., Gazzano, M., Bonvicini, F., Benetti, E., Soldati, R., Martelli, G., Rubini, K., Bigi, A.: Monocyclic β-lactams loaded on hydroxyapatite: new biomaterials with enhanced antibacterial activity against resistant strains. Sci. Rep. 7(1), 2712 (2017)CrossRefGoogle Scholar
- Gratton, S.E.A., Ropp, P.A., Pohlhaus, P.D., Luft, J.C., Madden, V.J., Napier, M.E., DeSimone, J.M.: The effect of particle design on cellular internalization pathways. Proc. Natl. Acad. Sci. 105(33), 11613–11618 (2008)CrossRefGoogle Scholar
- Gu, Y.W., Khor, K.A., Cheang, P.: Bone-like apatite layer formation on hydroxyapatite prepared by spark plasma sintering (SPS). Biomaterials 25(18), 4127–4134 (2004)CrossRefGoogle Scholar
- Guo, Y.-P., Yao, Y.-B., Ning, C.-Q., Guo, Y.-J., Chu, L.-F.: Fabrication of mesoporous carbonated hydroxyapatite microspheres by hydrothermal method. Mater. Lett. 65(14), 2205–2208 (2011)CrossRefGoogle Scholar
- Ha, S.-W., Jang, H.L., Nam, K.T., Beck, G.R.: Nano-hydroxyapatite modulates osteoblast lineage commitment by stimulation of DNA methylation and regulation of gene expression. Biomaterials 65, 32–42 (2015)CrossRefGoogle Scholar
- Habibovic, P., Kruyt, M.C., Juhl, M.V., Clyens, S., Martinetti, R., Dolcini, L., Theilgaard, N., van Blitterswijk, C.A.: Comparative in vivo study of six hydroxyapatite-based bone graft substitutes. J. Orthop. Res. 26(10), 1363–1370 (2008)CrossRefGoogle Scholar
- Hamdy, M.S., Awwad, N.S., Alshahrani, A.M.: Mesoporous magnesia: synthesis, characterization, adsorption behavior and cytotoxic activity. Mater. Des. 110, 503–509 (2016)CrossRefGoogle Scholar
- Hanes, P.J., Purvis, J.P.: Local anti-infective therapy: pharmacological agents. A systematic review. Ann. Periodontol. 8(1), 79–98 (2003)CrossRefGoogle Scholar
- Hannig, C., Basche, S., Burghardt, T., Al-Ahmad, A., Hannig, M.: Influence of a mouthwash containing hydroxyapatite microclusters on bacterial adherence in situ. Clin. Oral Invest. 17(3), 805–814 (2013)CrossRefGoogle Scholar
- Harja, M., Ciobanu, G.: Studies on adsorption of oxytetracycline from aqueous solutions onto hydroxyapatite (2018). 1879-1026 (Electronic)Google Scholar
- Hashimoto, Y., Taki, T., Sato, T.: Sorption of dissolved lead from shooting range soils using hydroxyapatite amendments synthesized from industrial byproducts as affected by varying pH conditions. J. Environ. Manage. 90(5), 1782–1789 (2009)CrossRefGoogle Scholar
- Hassan, M.I., Sultana, N.: Characterization, drug loading and antibacterial activity of nanohydroxyapatite/polycaprolactone (nHA/PCL) electrospun membrane. 3 Biotech 7(4), 249 (2017)Google Scholar
- Hiller, K.-A., Buchalla, W., Grillmeier, I., Neubauer, C., Schmalz, G.: In vitro effects of hydroxyapatite containing toothpastes on dentin permeability after multiple applications and ageing. Sci. Rep. 8(1), 4888 (2018)CrossRefGoogle Scholar
- Hou, C.-H., Hou, S.-M., Hsueh, Y.-S., Lin, J., Wu, H.-C., Lin, F.-H.: The in vivo performance of biomagnetic hydroxyapatite nanoparticles in cancer hyperthermia therapy. Biomaterials 30(23), 3956–3960 (2009)CrossRefGoogle Scholar
- Hu, J., Russell, J., Ben-Nissan, B., Vago, R.: Production and analysis of hydroxyapatite from Australian corals via hydrothermal process. J. Mater. Sci. Lett. 20(1), 85–87 (2001)CrossRefGoogle Scholar
- Hu, Y., Gu, X., Yang, Y., Huang, J., Hu, M., Chen, W., Tong, Z., Wang, C.: Facile fabrication of poly(L-lactic acid)-grafted hydroxyapatite/poly(lactic-co-glycolic acid) scaffolds by pickering high internal phase emulsion templates. ACS Appl. Mater. Interfaces 6(19), 17166–17175 (2014)CrossRefGoogle Scholar
- Huang, S., Gao, S., Cheng, L., Yu, H.: Remineralization potential of nano-hydroxyapatite on initial enamel lesions: an in vitro study. Caries Res. 45(5), 460–468 (2011)CrossRefGoogle Scholar
- Huang, Z.-B., Shi, X., Mao, J., Gong, S.-Q.: Design of a hydroxyapatite-binding antimicrobial peptide with improved retention and antibacterial efficacy for oral pathogen control. Sci. Rep. 6, 38410 (2016)CrossRefGoogle Scholar
- Itokazu, M., Sugiyama, T., Ohno, T., Wada, E., Katagiri, Y.: Development of porous apatite ceramic for local delivery of chemotherapeutic agents. J. Biomed. Mater. Res.: Off. J. Soc. Biomater., Jpn. Soc. Biomater., Aust. Soc. Biomater. 39(4), 536–538 (1998a)CrossRefGoogle Scholar
- Itokazu, M., Yang, W., Aoki, T., Ohara, A., Kato, N.: Synthesis of antibiotic-loaded interporous hydroxyapatite blocks by vacuum method and in vitro drug release testing. Biomaterials 19(7), 817–819 (1998b)CrossRefGoogle Scholar
- Jarlbring, M., Sandström, D.E., Antzutkin, O.N., Forsling, W.: Characterization of active phosphorus surface sites at synthetic carbonate-free fluorapatite using single-pulse 1H, 31P, and 31P CP MAS NMR. Langmuir 22(10), 4787–4792 (2006)CrossRefGoogle Scholar
- Jayasree, R., Kumar, T.S., Mahalaxmi, S., Abburi, S., Rubaiya, Y., Doble, M.: Dentin remineralizing ability and enhanced antibacterial activity of strontium and hydroxyl ion co-releasing radiopaque hydroxyapatite cement. J. Mater. Sci. Mater. Med. 28(6), 95 (2017)CrossRefGoogle Scholar
- Jee, S.S., Kasinath, R.K., DiMasi, E., Kim, Y.-Y., Gower, L.: Oriented hydroxyapatite in turkey tendon mineralized via the polymer-induced liquid-precursor (PILP) process. CrystEngComm 13(6), 2077–2083 (2011)CrossRefGoogle Scholar
- Jungbauer, A., Hahn, R., Deinhofer, K., Luo, P.: Performance and characterization of a nanophased porous hydroxyapatite for protein chromatography. Biotechnol. Bioeng. 87(3), 364–375 (2004)CrossRefGoogle Scholar
- Juntavee, N., Juntavee, A., Plongniras, P.: Remineralization potential of nano-hydroxyapatite on enamel and cementum surrounding margin of computer-aided design and computer-aided manufacturing ceramic restoration (2018). 1178-2013 (Electronic)CrossRefGoogle Scholar
- Kang, M.-H., Jung, H.-D., Kim, S.-W., Lee, S.-M., Kim, H.-E., Estrin, Y., Koh, Y.-H.: Production and bio-corrosion resistance of porous magnesium with hydroxyapatite coating for biomedical applications. Mater. Lett. 108, 122–124 (2013)CrossRefGoogle Scholar
- Karthik, A., Vinita, V., Gobi Saravanan, K., Viswanathan, K., Chavali, M.: Implant application of bioactive nano-hydroxyapatite powders—a comparative study. Mater. Res. Express 5(1), 015405 (2018)CrossRefGoogle Scholar
- Ke, D., Robertson, S.F., Dernell, W.S., Bandyopadhyay, A., Bose, S.: Effects of MgO and SiO2 on plasma-sprayed hydroxyapatite coating: an in vivo study in rat distal femoral defects. ACS Appl. Mater. Interfaces 9(31), 25731–25737 (2017)CrossRefGoogle Scholar
- Kensche, A., Pötschke, S., Hannig, C., Richter, G., Hoth-Hannig, W., Hannig, M.: Influence of calcium phosphate and apatite containing products on enamel erosion. Sci. World J. 2016, 12 (2016)Google Scholar
- Kensche, A., Holder, C., Basche, S., Tahan, N., Hannig, C., Hannig, M.: Efficacy of a mouthrinse based on hydroxyapatite to reduce initial bacterial colonisation in situ. Arch. Oral Biol. 80, 18–26 (2017)CrossRefGoogle Scholar
- Khajuria, D.K., Kumar, V.B., Gedanken, A., Karasik, D.: Accelerated bone regeneration by nitrogen-doped carbon dots functionalized with hydroxyapatite nanoparticles. LID (2018). https://doi.org/10.1021/acsami.8b02792. 1944-8252 (Electronic)CrossRefGoogle Scholar
- Khanarian, N.T., Haney, N.M., Burga, R.A., Lu, H.H.: A functional agarose-hydroxyapatite scaffold for osteochondral interface regeneration. Biomaterials 33(21), 5247–5258 (2012)CrossRefGoogle Scholar
- Khanna, K., Jaiswal, A., Dhumal, R.V., Selkar, N., Chaudhari, P., Soni, V.P., Vanage, G.R., Bellare, J.: Comparative bone regeneration study of hardystonite and hydroxyapatite as filler in critical-sized defect of rat calvaria. RSC Adv. 7(60), 37522–37533 (2017)CrossRefGoogle Scholar
- Kim, T.N., Feng, Q.L., Kim, J.O., Wu, J., Wang, H., Chen, G.C., Cui, F.Z.: Antimicrobial effects of metal ions (Ag+, Cu2+, Zn2+) in hydroxyapatite. J. Mater. Sci. Mater. Med. 9(3), 129–134 (1998)CrossRefGoogle Scholar
- Kim, H.-W., Kim, H.-E., Knowles, J.C.: Fluor-hydroxyapatite sol-gel coating on titanium substrate for hard tissue implants. Biomaterials 25(17), 3351–3358 (2004a)CrossRefGoogle Scholar
- Kim, H.W., Koh, Y.H., Li, L.H., Lee, S., Kim, H.E.: Hydroxyapatite coating on titanium substrate with titania buffer layer processed by sol-gel method. Biomaterials 25(13), 2533–2538 (2004b)CrossRefGoogle Scholar
- Kim, J.S., Kuk, E., Yu, K.N., Kim, J.-H., Park, S.J., Lee, H.J., Kim, S.H., Park, Y.K., Park, Y.H., Hwang, C.-Y.: Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnol., Biol. Med. 3(1), 95–101 (2007)Google Scholar
- Klesing, J., Chernousova, S., Epple, M.: Freeze-dried cationic calcium phosphatenanorods as versatile carriers of nucleic acids (DNA, siRNA). J. Mater. Chem. 22(1), 199–204 (2012)CrossRefGoogle Scholar
- Kokubo, T., Takadama, H.: How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27(15), 2907–2915 (2006)CrossRefGoogle Scholar
- Kolanthai, E., Ganesan, K., Epple, M., Kalkura, S.N.: Synthesis of nanosized hydroxyapatite/agarose powders for bone filler and drug delivery application. Mater. Today Commun. 8, 31–40 (2016)CrossRefGoogle Scholar
- Kong, L., Gao, Y., Cao, W., Gong, Y., Zhao, N., Zhang, X.: Preparation and characterization of nano-hydroxyapatite/chitosan composite scaffolds. J. Biomed. Mater. Res., Part A 75A(2), 275–282 (2005)CrossRefGoogle Scholar
- Kong, L., Mu, Z., Yu, Y., Zhang, L., Hu, J.: Polyethyleneimine-stabilized hydroxyapatite nanoparticles modified with hyaluronic acid for targeted drug delivery. RSC Adv. 6(104), 101790–101799 (2016)CrossRefGoogle Scholar
- Krishnan, A.G., Jayaram, L., Biswas, R., Nair, M.: Evaluation of antibacterial activity and cytocompatibility of ciprofloxacin loaded Gelatin–Hydroxyapatite scaffolds as a local drug delivery system for osteomyelitis treatment. Tissue Eng., Part A 21(7–8), 1422–1431 (2015)CrossRefGoogle Scholar
- Kundu, B., Ghosh, D., Sinha, M.K., Sen, P.S., Balla, V.K., Das, N., Basu, D.: Doxorubicin-intercalated nano-hydroxyapatite drug-delivery system for liver cancer: an animal model. Ceram. Int. 39(8), 9557–9566 (2013)CrossRefGoogle Scholar
- Kurtjak, M., Vukomanović, M., Kramer, L., Suvorov, D.: Biocompatible nano-gallium/hydroxyapatite nanocomposite with antimicrobial activity. J. Mater. Sci. Mater. Med. 27(11), 170 (2016)CrossRefGoogle Scholar
- Kwak, D.H., Lee, E.J., Kim, D.J.: Bioactivity of cellulose acetate/hydroxyapatite nanoparticle composite fiber by an electro-spinning process. J. Nanosci. Nanotechnol. 14(11), 8464–8471 (2014)CrossRefGoogle Scholar
- Larsen, M.J., Fejerkov, O.: Chemical and structural challenges in remineralization of dental enamel lesions. Eur. J. Oral Sci. 97(4), 285–296 (1989)CrossRefGoogle Scholar
- Li, M., Xiong, P., Yan, F., Li, S., Ren, C., Yin, Z, Li, A., Li, H., Ji, X., Zheng, Y., Cheng, Y.: An overview of graphene-based hydroxyapatite composites for orthopedic applications (2018). 2452-199X (Electronic)Google Scholar
- Li, S.H., De Wijn, J.R., Layrolle, P., de Groot, K.: Synthesis of macroporous hydroxyapatite scaffolds for bone tissue engineering. J. Biomed. Mater. Res. 61(1), 109–120 (2002)CrossRefGoogle Scholar
- Li, B., Guo, B., Fan, H., Zhang, X.: Preparation of nano-hydroxyapatite particles with different morphology and their response to highly malignant melanoma cells in vitro. Appl. Surf. Sci. 255(2), 357–360 (2008a)CrossRefGoogle Scholar
- Li, J., Yin, Y., Yao, F., Zhang, L., Yao, K.: Effect of nano- and micro-hydroxyapatite/chitosan-gelatin network film on human gastric cancer cells. Mater. Lett. 62(17), 3220–3223 (2008b)CrossRefGoogle Scholar
- Li, L., Liu, Y., Tao, J., Zhang, M., Pan, H., Xu, X., Tang, R.: Surface modification of hydroxyapatite nanocrystallite by a small amount of terbium provides a biocompatible fluorescent probe. J. Phys. Chem. C 112(32), 12219–12224 (2008c)CrossRefGoogle Scholar
- Liang, C., Joseph, M.M., James, C.M.L., Hao, L.: The role of surface charge on the uptake and biocompatibility of hydroxyapatite nanoparticles with osteoblast cells. Nanotechnology 22(10), 105708 (2011)CrossRefGoogle Scholar
- Lin, K., Pan, J., Chen, Y., Cheng, R., Xu, X.: Study the adsorption of phenol from aqueous solution on hydroxyapatite nanopowders. J. Hazard. Mater. 161(1), 231–240 (2009)CrossRefGoogle Scholar
- Liu, D.-M.: Fabrication and characterization of porous hydroxyapatite granules. Biomaterials 17(20), 1955–1957 (1996)CrossRefGoogle Scholar
- Lukasheva, N.V., Tolmachev, D.A.: Cellulose nanofibrils and mechanism of their mineralization in biomimetic synthesis of hydroxyapatite/native bacterial cellulose nanocomposites: molecular dynamics simulations. Langmuir 32(1), 125–134 (2015)CrossRefGoogle Scholar
- Lv, Q., Nair, L., Laurencin, C.T.: Fabrication, characterization, and in vitro evaluation of poly(lactic acid glycolic acid)/nano-hydroxyapatite composite microsphere-based scaffolds for bone tissue engineering in rotating bioreactors. J. Biomed. Mater. Res. A 91(3), 679–691 (2009)CrossRefGoogle Scholar
- Ma, Q.Y., Traina, S.J., Logan, T.J., Ryan, J.A.: Effects of Aqueous Al, Cd, Cu, Fe(II), Ni, and Zn on Pb immobilization by hydroxyapatite. Environ. Sci. Technol. 28(7), 1219–1228 (1994)CrossRefGoogle Scholar
- Madhumathi, K., Rubaiya, Y., Doble, M., Venkateswari, R., Sampath Kumar, T.S.: Antibacterial, anti-inflammatory, and bone-regenerative dual-drug-loaded calcium phosphate nanocarriers-in vitro and in vivo studies. LID (2018). https://doi.org/10.1007/s13346-018-0532-6. 2190-3948 (Electronic)CrossRefGoogle Scholar
- Mahdi, S., Ramin, R., Fabio, S., Maliheh, G., Michael, S.: Synthesis of stabilized hydroxyapatite nanosuspensions for enamel caries remineralization. Aust. Dent. J. 63, 356–364 (2018). https://doi.org/10.1111/adj.12624CrossRefGoogle Scholar
- Mahabole, M.P., Aiyer, R.C., Ramakrishna, C.V., Sreedhar, B., Khairnar, R.S.: Synthesis, characterization and gas sensing property of hydroxyapatite ceramic. Bull. Mater. Sci. 28(6), 535–545 (2005)CrossRefGoogle Scholar
- Maia, A.L., Cavalcante, C.H., Souza, M.G., Ferreira Cde, A., Rubello, D., Chondrogiannis, S., Cardoso, V.N., Ramaldes, G.A., Barros, A.L., Soares, D.C.: Hydroxyapatite nanoparticles. Nucl. Med. Commun. 37(7), 775–782 (2016)CrossRefGoogle Scholar
- Maia, A. L. C.: Vincristine-loaded hydroxyapatite nanoparticles as a potential delivery system for bone cancer therapy. (2018). https://doi.org/10.1080/1061186X.2017.1401078 CrossRefGoogle Scholar
- Malmberg, P., Nygren, H.: Methods for the analysis of the composition of bone tissue, with a focus on imaging mass spectrometry (TOF-SIMS). Proteomics 8(18), 3755–3762 (2008)CrossRefGoogle Scholar
- Marini, E., Ballanti, P., Silvestrini, G., Valdinucci, F., Bonucci, E.: The presence of different growth factors does not influence bone response to hydroxyapatite: preliminary results. J. Orthop. Andtraumatology 5(1), 34–43 (2004)CrossRefGoogle Scholar
- Meagher, M.J., Weiss-Bilka, H.E., Best, M.E., Boerckel, J.D., Wagner, D.R., Roeder, R.K.: Acellular hydroxyapatite-collagen scaffolds support angiogenesis and osteogenic gene expression in an ectopic murine model: effects of hydroxyapatite volume fraction. J. Biomed. Mater. Res., Part A 104(9), 2178–2188 (2016)CrossRefGoogle Scholar
- Mombelli, A.: Periodontitis as an infectious disease: specific features and their implications. Oral Dis. 9(s1), 6–10 (2003)CrossRefGoogle Scholar
- Munir, M.U., Ihsan, A., Sarwar, Y., Bajwa, S.Z., Bano, K., Tehseen, B., Zeb, N., Hussain, I., Ansari, M.T., Saeed, M., Li, J., Iqbal, M.Z., Wu, A., Khan, W.S.: Hollow mesoporous hydroxyapatite nanostructures; smart nanocarriers with high drug loading and controlled releasing features. Int. J. Pharm. 544(1), 112–120 (2018)CrossRefGoogle Scholar
- Nancy, D., Rajendran, N.: Vancomycin incorporated chitosan/gelatin coatings coupled with TiO2–SrHAP surface modified cp-titanium for osteomyelitis treatment. Int. J. Biol. Macromol. 110, 197–205 (2018)CrossRefGoogle Scholar
- Nasiri-Tabrizi, B., Fahami, A.: Synthesis and characterization of chlorapatite–ZnO composite nanopowders. Ceram. Int. 40(2), 2697–2706 (2014)CrossRefGoogle Scholar
- Nasri, K., El Feki, H., Sharrock, P., Fiallo, M., Nzihou, A.: Spray-dried monocalcium phosphate monohydrate for soluble phosphate fertilizer. Ind. Eng. Chem. Res. 54(33), 8043–8047 (2015)CrossRefGoogle Scholar
- Netz, D.J.A., Sepulveda, P., Pandolfelli, V.C., Spadaro, A.C.C., Alencastre, J.B., Bentley, M.V.L.B., Marchetti, J.M.: Potential use of gelcasting hydroxyapatite porous ceramic as an implantable drug delivery system. Int. J. Pharm. 213(1–2), 117–125 (2001)CrossRefGoogle Scholar
- Nozari, A., Ajami, S., Rafiei, A., Niazi, E.: Impact of nano hydroxyapatite, nano silver fluoride and sodium fluoride varnish on primary teeth enamel remineralization: an in vitro study (2017). 2249-782X (Print)Google Scholar
- O’Hare, P., Meenan, B.J., Burke, G.A., Byrne, G., Dowling, D., Hunt, J.A.: Biological responses to hydroxyapatite surfaces deposited via a co-incident microblasting technique. Biomaterials 31(3), 515–522 (2010)CrossRefGoogle Scholar
- Olsson, C., Emilson, C., Birkhed, D.: An in vitro study of fluoride release from a resin-modified glass ionomer cement after exposure to toothpaste slurries of different pH. Clin. Oral Invest. 4(4), 233–237 (2000)CrossRefGoogle Scholar
- Ong, J.L., Chan, D.C.: Hydroxyapatite and their use as coatings in dental implants: a review (2000). 0278-940X (Print)Google Scholar
- Oonishi, H., Hench, L., Wilson, J., Sugihara, F., Tsuji, E., Kushitani, S., Iwaki, H.: Comparative bone growth behavior in granules of bioceramic materials of various sizes. J. Biomed. Mater. Res.: Off. J. Soc. Biomater., Jpn. Soc. Biomater., Aust. Soc. Biomater. 44(1), 31–43 (1999)CrossRefGoogle Scholar
- Otsuka, M., Matsuda, Y., Suwa, Y., Fox, J.L., Higuchi, W.I.: A novel skeletal drug-delivery system using self-setting calcium phosphate cement. 4. Effects of the mixing solution volume on the drug-release rate of heterogeneous aspirin-loaded cement. J. Pharm. Sci. 83(2), 259–263 (1994)CrossRefGoogle Scholar
- Palazzo, B., Iafisco, M., Laforgia, M., Margiotta, N., Natile, G., Bianchi, C.L., Walsh, D., Mann, S., Roveri, N.: Biomimetic hydroxyapatite-drug nanocrystals as potential bone substitutes with antitumour drug delivery properties. Adv. Func. Mater. 17(13), 2180–2188 (2007)CrossRefGoogle Scholar
- Pandey, A., Midha, S., Sharma, R.K., Maurya, R., Nigam, V.K., Ghosh, S., Balani, K.: Antioxidant and antibacteria hydroxyapatite-based biocomposite for orthopedic applications (2018). 1873-0191 (Electronic)Google Scholar
- Park, H.-K., Lee, S.J., Oh, J.-S., Lee, S.-G., Jeong, Y.-I.L., Lee, H.C.: Smart nanoparticles based on hyaluronic acid for redox-responsive and CD44 receptor-mediated targeting of tumour. Nanoscale Res. Lett. 10(1), 981 (2015)Google Scholar
- Pelin, I.M., Maier, S.S., Chitanu, G.C., Bulacovschi, V.: Preparation and characterization of a hydroxyapatite–collagen composite as component for injectable bone substitute. Mater. Sci. Eng., C 29(7), 2188–2194 (2009)CrossRefGoogle Scholar
- Piccirillo, C., L Castro, P.M.: Calcium hydroxyapatite-based photocatalysts for environment remediation: characteristics, performances and future perspectives (2017). 1095-8630 (Electronic)Google Scholar
- Predoi, D., Popa, C.L., Chapon, P., Groza, A., Iconaru, S.L.: Evaluation of the antimicrobial activity of different antibiotics enhanced with silver-doped hydroxyapatite thin films. LID E778 [pii] (2016). https://doi.org/10.3390/ma9090778. 1996-1944 (Print)CrossRefGoogle Scholar
- Rabiei, A., Blalock, T., Thomas, B., Cuomo, J., Yang, Y., Ong, J.: Microstructure, mechanical properties, and biological response to functionally graded HA coatings. Mater. Sci. Eng., C 27(3), 529–533 (2007)CrossRefGoogle Scholar
- Rabinovich-Guilatt, L., Couvreur, P., Lambert, G., Dubernet, C.: Cationic vectors in ocular drug delivery. J. Drug Target. 12(9–10), 623–633 (2004)CrossRefGoogle Scholar
- Raucci, M.G., Demitri, C., Soriente, A., Fasolino, I., Sannino, A., Ambrosio, L.: Gelatin/nano‐hydroxyapatite hydrogel scaffold prepared by sol‐gel technology as filler to repair bone defects. J. Biomed. Mater. Res. 106(7), 2007–2019 Part A (2018). Wiley. ISSN: 1549-3296. https://doi.org/10.1002/jbm.a.36395CrossRefGoogle Scholar
- Riaz, M., Zia, R., Ijaz, A., Hussain, T., Mohsin, M., Malik, A.: Synthesis of monophasic Ag doped hydroxyapatite and evaluation of antibacterial activity (2018). 1873-0191 (Electronic)Google Scholar
- Roveri, N., Battistella, E., Foltran, I., Foresti, E., Iafisco, M., Lelli, M., Palazzo, B., Rimondini, L.: Synthetic biomimetic carbonate-hydroxyapatite nanocrystals for enamel remineralization. Adv. Mater. Res. 47–50, 821–824 (2008)CrossRefGoogle Scholar
- Sadat-Shojai, M., Atai, M., Nodehi, A., Khanlar, L.N.: Hydroxyapatite nanorods as novel fillers for improving the properties of dental adhesives: synthesis and application. Dent. Mater. 26(5), 471–482 (2010)CrossRefGoogle Scholar
- Sadat-Shojai, M., Khorasani, M.-T., Dinpanah-Khoshdargi, E., Jamshidi, A.: Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomater. 9(8), 7591–7621 (2013)CrossRefGoogle Scholar
- Sakamoto, A., Okamoto, T., Matsuda, S.: Unsintered hydroxyapatite and poly-l-lactide composite screws/plates for stabilizing beta-tricalcium phosphate bone implants (2018). 2005-4408 (Electronic)Google Scholar
- Sampath Kumar, T.S., Madhumathi, K., Rubaiya, Y., Doble, M.: Dual mode antibacterial activity of ion substituted calcium phosphate nanocarriers for bone infections (2015). 2296-4185 (Print)Google Scholar
- Sanjay, M., Madhu, P., Jawaid, M., Senthamaraikannan, P., Senthil, S., Pradeep, S.: Characterization and properties of natural fiber polymer composites: comprehensive review. J. Clean. Prod. 172, 566–581 (2018)CrossRefGoogle Scholar
- Sato, K.: Mechanism of hydroxyapatite mineralization in biological systems (review). J. Ceram. Soc. Jpn. 115(1338), 124–130 (2007)CrossRefGoogle Scholar
- Sato, T., Kikuchi, M., Aizawa, M.: Preparation of hydroxyapatite/collagen injectable bone paste with an anti-washout property utilizing sodium alginate. Part 1: influences of excess supplementation of calcium compounds. J. Mater. Sci. Mater. Med. 28(3), 49 (2017)CrossRefGoogle Scholar
- Schreurs, W., Rosenberg, H.: Effect of silver ions on transport and retention of phosphate by Escherichia coli. J. Bacteriol. 152(1), 7–13 (1982)Google Scholar
- Seol, Y.-J., Kim, J.Y., Park, E.K., Kim, S.-Y., Cho, D.-W.: Fabrication of a hydroxyapatite scaffold for bone tissue regeneration using microstereolithography and molding technology. Microelectron. Eng. 86(4), 1443–1446 (2009)CrossRefGoogle Scholar
- Shahmoradi, M., Rohanizadeh, R., Sonvico, F., Ghadiri, M., Swain, M.: Synthesis of stabilized hydroxyapatite nanosuspensions for enamel caries remineralization. LID (2018). https://doi.org/10.1111/adj.12624. 1834-7819 (Electronic)CrossRefGoogle Scholar
- Shanmugam, S., Gopal, B.: Copper substituted hydroxyapatite and fluorapatite: synthesis, characterization and antimicrobial properties. Ceram. Int. 40(10, Part A), 15655–15662 (2014)CrossRefGoogle Scholar
- Slots, J., Ting, M.: Systemic antibiotics in the treatment of periodontal disease. Periodontology 2000 28(1), 106–176 (2002)CrossRefGoogle Scholar
- Son, J.S., Appleford, M., Ong, J.L., Wenke, J.C., Kim, J.M., Choi, S.H., Oh, D.S.: Porous hydroxyapatite scaffold with three-dimensional localized drug delivery system using biodegradable microspheres. J. Control. Release 153(2), 133–140 (2011)CrossRefGoogle Scholar
- Stamm, W.E.: Infections related to medical devices. Ann. Intern. Med. 89(5, Part_2), 764–769 (1978)CrossRefGoogle Scholar
- Stanić, V., Dimitrijević, S., Antić-Stanković, J., Mitrić, M., Jokić, B., Plećaš, I.B., Raičević, S.: Synthesis, characterization and antimicrobial activity of copper and zinc-doped hydroxyapatite nanopowders. Appl. Surf. Sci. 256(20), 6083–6089 (2010)CrossRefGoogle Scholar
- Strietzel, F.P., Reichart, P.A., Graf, H.L.: Lateral alveolar ridge augmentation using a synthetic nano-crystalline hydroxyapatite bone substitution material (Ostim): preliminary clinical and histological results. Clin. Oral Implant. Res. 18(6), 743–751 (2007)CrossRefGoogle Scholar
- Suchanek, W., Yoshimura, M.: Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. J. Mater. Res. 13(01), 94–117 (1998)CrossRefGoogle Scholar
- Sugiyama, S., Minami, T., Hayashi, H., Tanaka, M., Shigemoto, N., Moffat, J.B.: Partial oxidation of methane to carbon oxides and hydrogen on hydroxyapatite: enhanced selectivity to carbon monoxide with tetrachloromethane. Energy Fuels 10(3), 828–830 (1996)CrossRefGoogle Scholar
- Sumer, B., Gao, J.: Theranostic nanomedicine for cancer. Nanomedicine 3(2), 137–140 (2008)CrossRefGoogle Scholar
- Sun, W., Fan, J., Wang, S., Kang, Y., Du, J., Peng, X.: Biodegradable drug-loaded hydroxyapatite nanotherapeutic agent for targeted drug release in tumours. ACS Appl. Mater. Interfaces. 10(9), 7832–7840 (2018)CrossRefGoogle Scholar
- Sundararaj, S.C., Thomas, M.V., Peyyala, R., Dziubla, T.D., Puleo, D.A.: Design of a multiple drug delivery system directed at periodontitis. Biomaterials 34(34), 8835–8842 (2013)CrossRefGoogle Scholar
- Tadashi, K., Seishi, E., Keiko, M., Yuji, T., Tetsu, T., Osamu, S., Shinji, K.: First clinical application of octacalcium phosphate collagen composite in human bone defect. Tissue Eng., Part A 20(7–8), 1336–1341 (2014)Google Scholar
- Tao, Z.S., Zhou, W.S., Qiang, Z., Tu, K.K., Huang, Z.L., Xu, H.M., Sun, T., Lv, Y.X., Cui, W., Yang, L.: Intermittent administration of human parathyroid hormone (1–34) increases fixation of strontium-doped hydroxyapatite coating titanium implants via electrochemical deposition in ovariectomized rat femur (2016). 1530-8022 (Electronic)Google Scholar
- Tao, Z.S., Bai, B.L., He, X.W., Liu, W., Li, H., Zhou, Q., Sun, T., Huang, Z.L., Tu, K.K., Lv, Y.X., Cui, W., Yang, L.: A comparative study of strontium-substituted hydroxyapatite coating on implant’s osseointegration for osteopenic rats (2016). 1741-0444 (Electronic)Google Scholar
- Tao, Z.-S., Zhou, W.-S., He, X.-W., Liu, W., Bai, B.-L., Zhou, Q., Huang, Z.-L., Tu, K.-K., Li, H., Sun, T., Lv, Y.-X., Cui, W., Yang, L.: A comparative study of zinc, magnesium, strontium-incorporated hydroxyapatite-coated titanium implants for osseointegration of osteopenic rats. Mater. Sci. Eng. C 62, 226–232 (2016)CrossRefGoogle Scholar
- Torres, J., Tamimi, I., Cabrejos-Azama, J., Tresguerres, I., Alkhraisat, M., López-Cabarcos, E., Hernández, G., Tamimi, F.: Monetite granules versus particulate autologous bone in bone regeneration. Ann. Anat. Anatomischer Anzeiger 200, 126–133 (2015)CrossRefGoogle Scholar
- Tripathi, G., Basu, B.: A porous hydroxyapatite scaffold for bone tissue engineering: physico-mechanical and biological evaluations. Ceram. Int. 38(1), 341–349 (2012)CrossRefGoogle Scholar
- Trombelli, L., Simonelli, A., Pramstraller, M., Wikesjö, U.M.E., Farina, R.: Single flap approach with and without guided tissue regeneration and a hydroxyapatite biomaterial in the management of intraosseous periodontal defects. J. Periodontol. 81(9), 1256–1263 (2010)CrossRefGoogle Scholar
- Tschoppe, P., Zandim, D.L., Martus, P., Kielbassa, A.M.: Enamel and dentine remineralization by nano-hydroxyapatite toothpastes. J. Dent. 39(6), 430–437 (2011)CrossRefGoogle Scholar
- Uchida, A., Shinto, Y., Araki, N., Ono, K.: Slow release of anticancer drugs from porous calcium hydroxyapatite ceramic. J. Orthop. Res. 10(3), 440–445 (1992)CrossRefGoogle Scholar
- Uskoković, V., Desai, T.A.: In vitro analysis of nanoparticulate hydroxyapatite/chitosan composites as potential drug delivery platforms for the sustained release of antibiotics in the treatment of osteomyelitis. J. Pharm. Sci. 103(2), 567–579 (2014)CrossRefGoogle Scholar
- Uskokovic, V., Ghosh, S., Wu, V.M.: Antimicrobial hydroxyapatite-gelatin-silica composite pastes with tunable setting properties (2017). 2050-750X (Print)Google Scholar
- Vahabzadeh, S., Roy, M., Bandyopadhyay, A., Bose, S.: Phase stability and biological property evaluation of plasma sprayed hydroxyapatite coatings for orthopedic and dental applications. Acta Biomater. 17, 47–55 (2015)CrossRefGoogle Scholar
- Vallet-Regí, M., González-Calbet, J.M.: Calcium phosphates as substitution of bone tissues. Prog. Solid State Chem. 32(1), 1–31 (2004)CrossRefGoogle Scholar
- Vano, M., Derchi, G., Barone, A., Pinna, R., Usai, P., Covani, U.: Reducing dentine hypersensitivity with nano-hydroxyapatite toothpaste: a double-blind randomized controlled trial. Clin. Oral Invest. 22(1), 313–320 (2018)CrossRefGoogle Scholar
- Vasir, J.K., Labhasetwar, V.: Quantification of the force of nanoparticle-cell membrane interactions and its influence on intracellular trafficking of nanoparticles. Biomaterials 29(31), 4244–4252 (2008)CrossRefGoogle Scholar
- Venkatasubbu, G.D., Ramasamy, S., Avadhani, G.S., Ramakrishnan, V., Kumar, J.: Surface modification and paclitaxel drug delivery of folic acid modified polyethylene glycol functionalized hydroxyapatite nanoparticles. Powder Technol. 235, 437–442 (2013)CrossRefGoogle Scholar
- Vyavhare, S., Sharma, D.S., Kulkarni,V.K.: Effect of three different pastes on remineralization of initial enamel lesion: an in vitro study (2015). 1053-4628 (Print)Google Scholar
- Wahl, D.A., Czernuszka, J.T.: Collagen-hydroxyapatite composites for hard tissue repair. Eur. Cells Mater. 11, 43–56 (2006)CrossRefGoogle Scholar
- Wang, L., Nancollas, G.H.: Pathways to biomineralization and biodemineralization of calcium phosphates: the thermodynamic and kinetic controls. Dalton Trans. (15), 2665–2672 (2009)Google Scholar
- Wang, Y., Liu, L., Guo, S.: Characterization of biodegradable and cytocompatible nano-hydroxyapatite/polycaprolactone porous scaffolds in degradation in vitro. Polym. Degrad. Stab. 95(2), 207–213 (2010)CrossRefGoogle Scholar
- Wang, G.-H., Zhao, Y.-Z., Tan, J., Zhu, S.-H., Zhou, K.-C.: Arginine functionalized hydroxyapatite nanoparticles and its bioactivity for gene delivery. Trans. Nonferrous Metals Soc. China 25(2), 490–496 (2015)CrossRefGoogle Scholar
- Wei, G., Ma, P.X.: Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials 25(19), 4749–4757 (2004)CrossRefGoogle Scholar
- Wei, M., Evans, J.H., Bostrom, T., Grøndahl, L.: Synthesis and characterization of hydroxyapatite, fluoride-substituted hydroxyapatite and fluorapatite. J. Mater. Sci.0020Mater. Med. 14(4), 311–320 (2003)CrossRefGoogle Scholar
- Wei, T., Liu, J., Ma, H., Cheng, Q., Huang, Y., Zhao, J., Huo, S., Xue, X., Liang, Z., Liang, X.-J.: Functionalized nanoscale micelles improve drug delivery for cancer therapy in vitro and in vivo. Nano Lett. 13(6), 2528–2534 (2013)CrossRefGoogle Scholar
- Wei, T., Chen, C., Liu, J., Liu, C., Posocco, P., Liu, X., Cheng, Q., Huo, S., Liang, Z., Fermeglia, M., Pricl, S., Liang, X.-J., Rocchi, P., Peng, L.: Anticancer drug nanomicelles formed by self-assembling amphiphilic dendrimer to combat cancer drug resistance. Proc. Natl. Acad. Sci. 112(10), 2978–2983 (2015)CrossRefGoogle Scholar
- Wu, Y., Xia, L., Zhou, Y., Ma, W., Zhang, N., Chang, J., Lin, K., Xu, Y., Jiang, X.: Evaluation of osteogenesis and angiogenesis of icariin loaded on micro/nano hybrid structured hydroxyapatite granules as a local drug delivery system for femoral defect repair. J. Mater. Chem. B 3(24), 4871–4883 (2015)CrossRefGoogle Scholar
- Xie, C.-M., Lu, X., Wang, K.-F., Meng, F.-Z., Jiang, O., Zhang, H.-P., Zhi, W., Fang, L.-M.: Silver nanoparticles and growth factors incorporated hydroxyapatite coatings on metallic implant surfaces for enhancement of osteoinductivity and antibacterial properties. ACS Appl. Mater. Interfaces 6(11), 8580–8589 (2014)CrossRefGoogle Scholar
- Xie, C., Lu, X., Wang, K., Yuan, H., Fang, L., Zheng, X., Chan, C., Ren, F., Zhao, C.: Pulse electrochemical driven rapid layer-by-layer assembly of polydopamine and hydroxyapatite nanofilms via alternative redox in situ synthesis for bone regeneration. ACS Biomater. Sci. Eng. 2(6), 920–928 (2016)CrossRefGoogle Scholar
- Xiong, H., Du, S., Ni, J., Zhou, J., Yao, J.: Mitochondria and nuclei dual-targeted heterogeneous hydroxyapatite nanoparticles for enhancing therapeutic efficacy of doxorubicin. Biomaterials 94, 70–83 (2016)CrossRefGoogle Scholar
- Xiong, Z.-C., Yang, Z.-Y., Zhu, Y.-J., Chen, F.-F., Zhang, Y.-G., Yang, R.L.: Ultralong hydroxyapatite nanowires-based paper co-loaded with silver nanoparticles and antibiotic for long-term antibacterial benefit (2017). 1944–8252 (Electronic)Google Scholar
- Yan, L., Xiang, Y., Yu, J., Wang, Y., Cui, W.: Fabrication of antibacterial and antiwear hydroxyapatite coatings via in situ chitosan-mediated pulse electrochemical deposition. ACS Appl. Mater. Interfaces 9(5), 5023–5030 (2017)CrossRefGoogle Scholar
- Yang, W., Shen, C., Ji, Q., An, H., Wang, J., Liu, Q., Zhang, Z.: Food storage material silver nanoparticles interfere with DNA replication fidelity and bind with DNA. Nanotechnology 20(8), 085102 (2009)CrossRefGoogle Scholar
- Ye, Q., Ohsaki, K., Li, K., Li, D.-J., Zhu, C.-S., Ogawa, T., Tenshin, S., Takano-Yamamoto, T.: Histological reaction to hydroxyapatite in the middle ear of rats. Auris Nasus Larynx 28(2), 131–136 (2001)CrossRefGoogle Scholar
- Yih, T.C., Al-Fandi, M.: Engineered nanoparticles as precise drug delivery systems. J. Cell. Biochem. 97(6), 1184–1190 (2006)CrossRefGoogle Scholar
- Yoo, H.S., Park, T.G.: Folate-receptor-targeted delivery of doxorubicin nano-aggregates stabilized by doxorubicin–PEG–folate conjugate. J. Control. Release 100(2), 247–256 (2004)CrossRefGoogle Scholar
- Yunoki, S., Sugiura, H., Ikoma, T., Kondo, E., Yasuda, K., Tanaka, J.: Effects of increased collagen-matrix density on the mechanical properties andin vivoabsorbability of hydroxyapatite–collagen composites as artificial bone materials. Biomed. Mater. 6(1), 015012 (2011)CrossRefGoogle Scholar
- Zhang, H.-B., Zhou, K.-C., Li, Z.-Y., Huang, S.-P.: Plate-like hydroxyapatite nanoparticles synthesized by the hydrothermal method. J. Phys. Chem. Solids 70(1), 243–248 (2009a)CrossRefGoogle Scholar
- Zhang, P., Hong, Z., Yu, T., Chen, X., Jing, X.: In vivo mineralization and osteogenesis of nanocomposite scaffold of poly(lactide-co-glycolide) and hydroxyapatite surface-grafted with poly(l-lactide). Biomaterials 30(1), 58–70 (2009b)CrossRefGoogle Scholar
- Zhang, L., Pei, J., Wang, H., Shi, Y., Niu, J., Yuan, F., Huang, H., Zhang, H., Yuan, G.: Facile preparation of poly(lactic acid)/brushite bilayer coating on biodegradable magnesium alloys with multiple functionalities for orthopedic application. ACS Appl. Mater. Interfaces. 9(11), 9437–9448 (2017)CrossRefGoogle Scholar
- Zhang, Y., Liu, X., Li, Z., Zhu, S., Yuan, X., Cui, Z., Yang, X., Chu, P.K., Wu, S.: Nano Ag/ZnO-incorporated hydroxyapatite composite coatings: highly effective infection prevention and excellent osteointegration. ACS Appl. Mater. Interfaces 10(1), 1266–1277 (2018)CrossRefGoogle Scholar
- Zhao, F., Yin, Y., Lu, W.W., Leong, J.C., Zhang, W., Zhang, J., Zhang, M., Yao, K.: Preparation and histological evaluation of biomimetic three-dimensional hydroxyapatite/chitosan-gelatin network composite scaffolds. Biomaterials 23(15), 3227–3234 (2002)CrossRefGoogle Scholar
- Zhao, J., Liu, Y., Sun, W.-B., Zhang, H.: Amorphous calcium phosphate and its application in dentistry. Chem. Cent. J. 5(1), 40 (2011)CrossRefGoogle Scholar
- Zhao, L., Zhao, W., Liu, Y., Chen, X., Wang, Y.: Nano-hydroxyapatite-derived drug and gene co-delivery system for anti-angiogenesis therapy of breast cancer. Med. Sci. Monit.: Int. Med. J. Exp. Clin. Res. 23, 4723–4732 (2017)CrossRefGoogle Scholar
- Zimmerli, W., Lew, P., Waldvogel, F.A.: Pathogenesis of foreign body infection. Evidence for a local granulocyte defect. J. Clin. Investig. 73(4), 1191–1200 (1984)CrossRefGoogle Scholar
Copyright information
© Springer Nature Switzerland AG 2019