Advertisement

Nanoparticles and Biological Environment Interactions

  • Armin Azadkhah Shalmani
  • Pouria Sarihi
  • Mohammad RaoufiEmail author
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 104)

Abstract

Deployment of nanoparticles (NPs) as diagnostic and therapeutic agents has been an intriguing approach over the past recent years. Downscaling to nano-dimension can drastically change the properties of a given substance.

References

  1. Aggarwal, P., Hall, J.B., McLeland, C.B., Dobrovolskaia, M.A., McNeil, S.E.: Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv. Drug Deliv. Rev. 61(6), 428–437 (2009)CrossRefGoogle Scholar
  2. Barrán-Berdón, A.L., Pozzi, D., Caracciolo, G., Capriotti, A.L., Caruso, G., Cavaliere, C., Riccioli, A., Palchetti, S., Laganà, A.: Time evolution of nanoparticle–protein corona in human plasma: relevance for targeted drug delivery. Langmuir 29(21), 6485–6494 (2013)CrossRefGoogle Scholar
  3. Caputo, D., Papi, M., Coppola, R., Palchetti, S., Digiacomo, L., Caracciolo, G., Pozzi, D.: A protein corona-enabled blood test for early cancer detection. Nanoscale 9(1), 349–354 (2017)CrossRefGoogle Scholar
  4. Caracciolo, G., Callipo, L., De Sanctis, S.C., Cavaliere, C., Pozzi, D., Laganà, A.: Surface adsorption of protein corona controls the cell internalization mechanism of DC-Chol–DOPE/DNA lipoplexes in serum. Biochim. Biophys. Acta (BBA) Biomembr. 1798(3), 536–543 (2010)CrossRefGoogle Scholar
  5. Carlson, C., Hussain, S.M., Schrand, A.M., Braydich-Stolle, L.K., Hess, K.L., Jones, R.L., Schlager, J.J.: Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J. Phys. Chem. B 112(43), 13608–13619 (2008)CrossRefGoogle Scholar
  6. Cedervall, T., Lynch, I., Lindman, S., Berggard, T., Thulin, E., Nilsson, H., Dawson, K.A., Linse, S.: Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl. Acad. Sci. U.S.A. 104(7), 2050–2055 (2007)CrossRefGoogle Scholar
  7. Chen, F., Wang, G., Griffin, J.I., Brenneman, B., Banda, N.K., Holers, V.M., Backos, D.S., Wu, L., Moghimi, S.M., Simberg, D.: Complement proteins bind to nanoparticle protein corona and undergo dynamic exchange in vivo. Nat. Nanotechnol. 12(4), 387 (2017)CrossRefGoogle Scholar
  8. Colapicchioni, V., Tilio, M., Digiacomo, L., Gambini, V., Palchetti, S., Marchini, C., Pozzi, D., Occhipinti, S., Amici, A., Caracciolo, G.: Personalized liposome–protein corona in the blood of breast, gastric and pancreatic cancer patients. Int. J. Biochem. Cell Biol. 75, 180–187 (2016)CrossRefGoogle Scholar
  9. Corbo, C., Molinaro, R., Tabatabaei, M., Farokhzad, O.C., Mahmoudi, M.: Personalized protein corona on nanoparticles and its clinical implications. Biomater. Sci. 5(3), 378–387 (2017)CrossRefGoogle Scholar
  10. Cox, M.C., Barnham, K.J., Frenkiel, T.A., Hoeschele, J.D., Mason, A.B., He, Q.-Y., Woodworth, R.C., Sadler, P.: Identification of platination sites on human serum transferrin using 13C and 15N NMR spectroscopy. J. Biol. Inorg. Chem. 4(5), 621–631 (1999)CrossRefGoogle Scholar
  11. Deng, Z.J., Liang, M., Monteiro, M., Toth, I., Minchin, R.F.: Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation. Nat. Nanotechnol. 6(1), 39 (2011)CrossRefGoogle Scholar
  12. Deng, Z.J., Mortimer, G., Schiller, T., Musumeci, A., Martin, D., Minchin, R.F.: Differential plasma protein binding to metal oxide nanoparticles. Nanotechnology 20(45), 455101 (2009)CrossRefGoogle Scholar
  13. Dobson, C.M.: Protein folding and misfolding. Nature 426(6968), 884 (2003)CrossRefGoogle Scholar
  14. Farrera, C., Fadeel, B.: It takes two to tango: Understanding the interactions between engineered nanomaterials and the immune system. Eur. J. Pharm. Biopharm. 95, 3–12 (2015)CrossRefGoogle Scholar
  15. Foroozandeh, P., Aziz, A.A.: Merging worlds of nanomaterials and biological environment: factors governing protein corona formation on nanoparticles and its biological consequences. Nanoscale Res. Lett. 10(1), 221 (2015)CrossRefGoogle Scholar
  16. Fröhlich, E.: The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int. J. Nanomed. 7, 5577 (2012)CrossRefGoogle Scholar
  17. García-Álvarez, R., Hadjidemetriou, M., Sánchez-Iglesias, A., Liz-Marzán, L.M., Kostarelos, K.: In vivo formation of protein corona on gold nanoparticles. The effect of their size and shape. Nanoscale (2018)Google Scholar
  18. Gaumet, M., Vargas, A., Gurny, R., Delie, F.: Nanoparticles for drug delivery: the need for precision in reporting particle size parameters. Eur. J. Pharm. Biopharm. 69(1), 1–9 (2008)CrossRefGoogle Scholar
  19. Gebauer, J.S., Malissek, M., Simon, S., Knauer, S.K., Maskos, M., Stauber, R.H., Peukert, W., Treuel, L.: Impact of the nanoparticle–protein corona on colloidal stability and protein structure. Langmuir 28(25), 9673–9679 (2012)CrossRefGoogle Scholar
  20. Gheshlaghi, Z.N., Riazi, G.H., Ahmadian, S., Ghafari, M., Mahinpour, R.: Toxicity and interaction of titanium dioxide nanoparticles with microtubule protein. Acta Biochim. Biophys. Sin. 40(9), 777–782 (2008)CrossRefGoogle Scholar
  21. Hadjidemetriou, M., Kostarelos, K.: Nanomedicine: evolution of the nanoparticle corona. Nat. Nanotechnol. 12(4), 288 (2017)CrossRefGoogle Scholar
  22. Hajipour, M.J., Ghasemi, F., Aghaverdi, H., Raoufi, M., Linne, U., Atyabi, F., Nabipour, I., Azhdarzadeh, M., Derakhshankhah, H., Lotfabadi, A.: Sensing of Alzheimer’s disease and multiple sclerosis using nano-bio interfaces. J. Alzheimers Dis. 59(4), 1187–1202 (2017)CrossRefGoogle Scholar
  23. Hajipour, M.J., Laurent, S., Aghaie, A., Rezaee, F., Mahmoudi, M.: Personalized protein coronas: a “key” factor at the nanobiointerface. Biomater. Sci. 2(9), 1210–1221 (2014)CrossRefGoogle Scholar
  24. Harush-Frenkel, O., Debotton, N., Benita, S., Altschuler, Y.: Targeting of nanoparticles to the clathrin-mediated endocytic pathway. Biochem. Biophys. Res. Commun. 353(1), 26–32 (2007)CrossRefGoogle Scholar
  25. Hu, C.-M.J., Zhang, L., Aryal, S., Cheung, C., Fang, R.H., Zhang, L.: Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl. Acad. Sci. 108(27), 10980–10985 (2011a)CrossRefGoogle Scholar
  26. Hu, W., Peng, C., Lv, M., Li, X., Zhang, Y., Chen, N., Fan, C., Huang, Q.: Protein corona-mediated mitigation of cytotoxicity of graphene oxide. ACS Nano 5(5), 3693–3700 (2011b)CrossRefGoogle Scholar
  27. Jansch, M., Stumpf, P., Graf, C., Rühl, E., Müller, R.: Adsorption kinetics of plasma proteins on ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles. Int. J. Pharm. 428(1–2), 125–133 (2012)CrossRefGoogle Scholar
  28. Lesniak, A., Fenaroli, F., Monopoli, M.P., Åberg, C., Dawson, K.A., Salvati, A.: Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells. ACS Nano 6(7), 5845–5857 (2012)CrossRefGoogle Scholar
  29. Lynch, I., Dawson, K.A.: Protein–nanoparticle interactions. Nano Today 3(1–2), 40–47 (2008)CrossRefGoogle Scholar
  30. Mahmoudi, M., Abdelmonem, A.M., Behzadi, S., Clement, J.H., Dutz, S., Ejtehadi, M.R., Hartmann, R., Kantner, K., Linne, U., Maffre, P.: Temperature: the “ignored” factor at the nanobio interface. ACS Nano 7(8), 6555–6562 (2013a)CrossRefGoogle Scholar
  31. Mahmoudi, M., Kalhor, H.R., Laurent, S., Lynch, I.: Protein fibrillation and nanoparticle interactions: opportunities and challenges. Nanoscale 5(7), 2570–2588 (2013b)CrossRefGoogle Scholar
  32. Mahmoudi, M., Monopoli, M.P., Rezaei, M., Lynch, I., Bertoli, F., McManus, J.J., Dawson, K.A.: The protein corona mediates the impact of nanomaterials and slows amyloid beta fibrillation. ChemBioChem 14(5), 568–572 (2013c)CrossRefGoogle Scholar
  33. Mahmoudi, M., Sheibani, S., Milani, A.S., Rezaee, F., Gauberti, M., Dinarvand, R., Vali, H.: Crucial role of the protein corona for the specific targeting of nanoparticles. Nanomedicine 10(2), 215–226 (2015)CrossRefGoogle Scholar
  34. Maiolo, D., Del Pino, P., Metrangolo, P., Parak, W.J., Baldelli Bombelli, F.: Nanomedicine delivery: does protein corona route to the target or off road? Nanomedicine 10(21), 3231–3247 (2015)CrossRefGoogle Scholar
  35. Milani, S., Baldelli Bombelli, F., Pitek, A.S., Dawson, K.A., Rädler, J.: Reversible versus irreversible binding of transferrin to polystyrene nanoparticles: soft and hard corona. ACS Nano 6(3), 2532–2541 (2012)CrossRefGoogle Scholar
  36. Mirsadeghi, S., Dinarvand, R., Ghahremani, M.H., Hormozi-Nezhad, M.R., Mahmoudi, Z., Hajipour, M.J., Atyabi, F., Ghavami, M., Mahmoudi, M.: Protein corona composition of gold nanoparticles/nanorods affects amyloid beta fibrillation process. Nanoscale 7(11), 5004–5013 (2015)CrossRefGoogle Scholar
  37. Mirshafiee, V., Kim, R., Park, S., Mahmoudi, M., Kraft, M.L.: Impact of protein pre-coating on the protein corona composition and nanoparticle cellular uptake. Biomaterials 75, 295–304 (2016)CrossRefGoogle Scholar
  38. Molinaro, R., Corbo, C., Martinez, J.O., Taraballi, F., Evangelopoulos, M., Minardi, S., Yazdi, I.K., Zhao, P., De Rosa, E., Sherman, M.: Biomimetic proteolipid vesicles for targeting inflamed tissues. Nat. Mater. 15(9), 1037 (2016)CrossRefGoogle Scholar
  39. Monopoli, M.P., Aberg, C., Salvati, A., Dawson, K.A.: Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotechnol. 7(12), 779–786 (2012)CrossRefGoogle Scholar
  40. Monopoli, M.P., Walczyk, D., Campbell, A., Elia, G., Lynch, I., Baldelli Bombelli, F., Dawson, K.A.: Physical–chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J. Am. Chem. Soc. 133(8), 2525–2534 (2011)CrossRefGoogle Scholar
  41. Moyano, D.F., Saha, K., Prakash, G., Yan, B., Kong, H., Yazdani, M., Rotello, V.M.: Fabrication of corona-free nanoparticles with tunable hydrophobicity. ACS Nano 8(7), 6748–6755 (2014)CrossRefGoogle Scholar
  42. Müller, L.K., Simon, J., Rosenauer, C., Mailänder, V., Morsbach, S., Landfester, K.: The transferability from animal models to humans: challenges regarding aggregation and protein corona formation of nanoparticles. Biomacromolecules 19(2), 374–385 (2018)CrossRefGoogle Scholar
  43. Neagu, M., Piperigkou, Z., Karamanou, K., Engin, A.B., Docea, A.O., Constantin, C., Negrei, C., Nikitovic, D., Tsatsakis, A.: Protein bio-corona: critical issue in immune nanotoxicology. Arch. Toxicol. 91(3), 1031–1048 (2017)CrossRefGoogle Scholar
  44. Norde, W.: Protein adsorption at solid surfaces: a thermodynamic approach. Pure Appl. Chem. 66(3), 491–496 (1994)CrossRefGoogle Scholar
  45. Pederzoli, F., Tosi, G., Vandelli, M.A., Belletti, D., Forni, F., Ruozi, B.: Protein corona and nanoparticles: how can we investigate on? Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 9(6) (2017)Google Scholar
  46. Pelaz, B., del Pino, P., Maffre, P., Hartmann, R., Gallego, M., Rivera-Fernandez, S., de la Fuente, J.M., Nienhaus, G.U., Parak, W.J.: Surface functionalization of nanoparticles with polyethylene glycol: effects on protein adsorption and cellular uptake. ACS Nano 9(7), 6996–7008 (2015)CrossRefGoogle Scholar
  47. Roach, P., Farrar, D., Perry, C.C.: Interpretation of protein adsorption: surface-induced conformational changes. J. Am. Chem. Soc. 127(22), 8168–8173 (2005)CrossRefGoogle Scholar
  48. Saha, K., Moyano, D.F., Rotello, V.M.: Protein coronas suppress the hemolytic activity of hydrophilic and hydrophobic nanoparticles. Mater. Horiz. 1(1), 102–105 (2014)CrossRefGoogle Scholar
  49. Salvati, A., Pitek, A.S., Monopoli, M.P., Prapainop, K., Bombelli, F.B., Hristov, D.R., Kelly, P.M., Åberg, C., Mahon, E., Dawson, K.A.: Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat. Nanotechnol. 8(2), 137 (2013)CrossRefGoogle Scholar
  50. Segets, D., Marczak, R., Schäfer, S., Paula, C., Gnichwitz, J.-F., Hirsch, A., Peukert, W.: Experimental and theoretical studies of the colloidal stability of nanoparticles—a general interpretation based on stability maps. ACS Nano 5(6), 4658–4669 (2011)CrossRefGoogle Scholar
  51. Tenzer, S., Docter, D., Kuharev, J., Musyanovych, A., Fetz, V., Hecht, R., Schlenk, F., Fischer, D., Kiouptsi, K., Reinhardt, C.: Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat. Nanotechnol. 8(10), 772 (2013)CrossRefGoogle Scholar
  52. Vroman, L.: Effect of absorbed proteins on the wettability of hydrophilic and hydrophobic solids. Nature 196, 476–477 (1962)CrossRefGoogle Scholar
  53. Wagner, V., Dullaart, A., Bock, A.-K., Zweck, A.: The emerging nanomedicine landscape. Nat. Biotechnol. 24(10), 1211 (2006)CrossRefGoogle Scholar
  54. Walkey, C.D., Chan, W.C.: Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem. Soc. Rev. 41(7), 2780–2799 (2012)CrossRefGoogle Scholar
  55. Yang, S.T., Liu, Y., Wang, Y.W., Cao, A.: Biosafety and bioapplication of nanomaterials by designing protein–nanoparticle interactions. Small 9(9–10), 1635–1653 (2013)CrossRefGoogle Scholar
  56. Zanganeh, S., Spitler, R., Erfanzadeh, M., Alkilany, A.M., Mahmoudi, M.: Protein corona: opportunities and challenges. Int. J. Biochem. Cell Biol. 75, 143–147 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Armin Azadkhah Shalmani
    • 1
  • Pouria Sarihi
    • 2
  • Mohammad Raoufi
    • 2
    Email author
  1. 1.Faculty of PharmacyTehran University of Medical SciencesTehranIran
  2. 2.Faculty of Pharmacy, Nanotechnology Research CenterTehran University of Medical SciencesTehranIran

Personalised recommendations