Advertisement

Gaps and Well-Composed Objects in the Triangular Grid

  • Lidija ČomićEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11382)

Abstract

We extend the notion of a gap from the square to the triangular grid, and we propose a possible classification of gaps in this grid. We give four definitions of well-composed objects in the triangular grid by translating the existing definitions of such objects in the square grid. We show that these definitions in the triangular grid are equivalent, as they are in the square grid.

We give a formula relating the number of gaps of different types in an object in this grid with the number of boundary cells in the object, as well as three short intuitive proofs of this formula.

Keywords

Digital topology Triangular grid Gaps Well-composedness 

Notes

Acknowledgement

We are grateful to the anonymous reviewers for careful reading of the paper and constructive comments. This work has been partially supported by the Ministry of Education and Science of the Republic of Serbia within the Project No. 34014.

References

  1. 1.
    Borgefors, G.: Distance transformations on hexagonal grids. Pattern Recognit. Lett. 9(2), 97–105 (1989)CrossRefGoogle Scholar
  2. 2.
    Borgefors, G., Sanniti di Baja, G.: Skeletonizing the distance transform on the hexagonal grid. In: 9th International Conference on Pattern Recognition, ICPR, pp. 504–507 (1988)Google Scholar
  3. 3.
    Boutry, N.: A study of well-composedness in n-D (Une étude du bien-composé en dimension n). Ph.D. thesis, University of Paris-Est, France (2016)Google Scholar
  4. 4.
    Boutry, N., Géraud, T., Najman, L.: How to make nD images well-composed without interpolation. In: 2015 IEEE International Conference on Image Processing, ICIP 2015, pp. 2149–2153 (2015)Google Scholar
  5. 5.
    Boutry, N., Géraud, T., Najman, L.: A tutorial on well-composedness. J. Math. Imaging Vis. 60(3), 443–478 (2018)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bribiesca, E.: A new chain code. Pattern Recognit. 32(2), 235–251 (1999)CrossRefGoogle Scholar
  7. 7.
    Brimkov, V.E.: Formulas for the number of \((n-2)\)-gaps of binary objects in arbitrary dimension. Discret. Appl. Math. 157(3), 452–463 (2009)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Brimkov, V.E., Maimone, A., Nordo, G.: An explicit formula for the number of tunnels in digital objects. CoRR abs/cs/0505084 (2005). http://arxiv.org/abs/cs/0505084
  9. 9.
    Brimkov, V.E., Maimone, A., Nordo, G.: Counting gaps in binary pictures. In: Reulke, R., Eckardt, U., Flach, B., Knauer, U., Polthier, K. (eds.) IWCIA 2006. LNCS, vol. 4040, pp. 16–24. Springer, Heidelberg (2006).  https://doi.org/10.1007/11774938_2CrossRefGoogle Scholar
  10. 10.
    Brimkov, V.E., Maimone, A., Nordo, G., Barneva, R.P., Klette, R.: The number of gaps in binary pictures. In: Bebis, G., Boyle, R., Koracin, D., Parvin, B. (eds.) ISVC 2005. LNCS, vol. 3804, pp. 35–42. Springer, Heidelberg (2005).  https://doi.org/10.1007/11595755_5CrossRefGoogle Scholar
  11. 11.
    Brimkov, V.E., Moroni, D., Barneva, R.: Combinatorial relations for digital pictures. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp. 189–198. Springer, Heidelberg (2006).  https://doi.org/10.1007/11907350_16CrossRefzbMATHGoogle Scholar
  12. 12.
    Brimkov, V.E., Nordo, G., Barneva, R.P., Maimone, A.: Genus and dimension of digital images and their time- and space-efficient computation. Int. J. Shape Model. 14(2), 147–168 (2008)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Čomić, L.: On gaps in digital objects. In: Barneva, R., Brimkov, V., Tavares, J. (eds.) IWCIA 2018. LNCS, vol. 11255, pp. 3–16. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-05288-1_1CrossRefGoogle Scholar
  14. 14.
    Čomić, L., Magillo, P.: Repairing 3D binary images using the BCC grid with a 4-valued combinatorial coordinate system. Inf. Sci. (2019, to appear)Google Scholar
  15. 15.
    Deutsch, E.S.: On parallel operations on hexagonal arrays. IEEE Trans. Comput. 19(10), 982–983 (1970)CrossRefGoogle Scholar
  16. 16.
    Deutsch, E.S.: Thinning algorithms on rectangular, hexagonal, and triangular arrays. Commun. ACM 15(9), 827–837 (1972)CrossRefGoogle Scholar
  17. 17.
    Dutt, M., Andres, E., Largeteau-Skapin, G.: Characterization and generation of straight line segments on triangular cell grid. Pattern Recognit. Lett. 103, 68–74 (2018)CrossRefGoogle Scholar
  18. 18.
    Dutt, M., Biswas, A., Nagy, B.: Number of shortest paths in triangular grid for 1- and 2-neighborhoods. In: Barneva, R.P., Bhattacharya, B.B., Brimkov, V.E. (eds.) IWCIA 2015. LNCS, vol. 9448, pp. 115–124. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-26145-4_9CrossRefGoogle Scholar
  19. 19.
    Evako, A.V., Kopperman, R., Mukhin, Y.V.: Dimensional properties of graphs and digital spaces. J. Math. Imaging Vis. 6(2–3), 109–119 (1996)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Freeman, H.: Algorithm for generating a digital straight line on a triangular grid. IEEE Trans. Comput. 28(2), 150–152 (1979)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Golay, M.J.E.: Hexagonal parallel pattern transformations. IEEE Trans. Comput. 18(8), 733–740 (1969)CrossRefGoogle Scholar
  22. 22.
    González-Díaz, R., Jiménez, M.-J., Medrano, B.: 3D well-composed polyhedral complexes. Discret. Appl. Math. 183, 59–77 (2015)MathSciNetCrossRefGoogle Scholar
  23. 23.
    González-Díaz, R., Jiménez, M.-J., Medrano, B.: Efficiently storing well-composed polyhedral complexes computed over 3D binary images. J. Math. Imaging Vis. 59(1), 106–122 (2017)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Gray, S.: Local properties of binary images in two dimensions. IEEE Trans. Comput. 20, 551–561 (1971)CrossRefGoogle Scholar
  25. 25.
    Her, I.: Geometric transformations on the hexagonal grid. IEEE Trans. Image Process. 4(9), 1213–1222 (1995)CrossRefGoogle Scholar
  26. 26.
    Kardos, P., Palágyi, K.: Topology preservation on the triangular grid. Ann. Math. Artif. Intell. 75(1–2), 53–68 (2015)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Kardos, P., Palágyi, K.: On topology preservation of mixed operators in triangular, square, and hexagonal grids. Discret. Appl. Math. 216, 441–448 (2017)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture Analysis. Morgan Kaufmann Publishers, San Francisco, Amsterdam (2004)zbMATHGoogle Scholar
  29. 29.
    Kong, T.Y., Rosenfeld, A.: Digital topology: introduction and survey. Comput. Vis., Graph., Image Process. 48(3), 357–393 (1989)CrossRefGoogle Scholar
  30. 30.
    Kovalevsky, V.A.: Geometry of Locally Finite Spaces: Computer Agreeable Topology and Algorithms for Computer Imagery. Editing House Dr. Bärbel Kovalevski, Berlin (2008)Google Scholar
  31. 31.
    Latecki, L.J.: 3D well-composed pictures. CVGIP: Graph. Model Image Process. 59(3), 164–172 (1997)Google Scholar
  32. 32.
    Latecki, L.J., Eckhardt, U., Rosenfeld, A.: Well-composed sets. Comput. Vis. Image Underst. 61(1), 70–83 (1995)CrossRefGoogle Scholar
  33. 33.
    Maimone, A., Nordo, G.: On 1-gaps in 3d digital objects. Filomat 22(3), 85–91 (2011)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Maimone, A., Nordo, G.: A formula for the number of \((n-2)\)-gaps in digital \(n\)-objects. Filomat 27(4), 547–557 (2013)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Nagy, B.: Cellular topology and topological coordinate systems on the hexagonal and on the triangular grids. Ann. Math. Artif. Intell. 75(1–2), 117–134 (2015)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Nagy, B., Lukic, T.: Dense projection tomography on the triangular tiling. Fundam. Inform. 145(2), 125–141 (2016)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Nagy, B., Strand, R.: Approximating Euclidean circles by neighbourhood sequences in a hexagonal grid. Theor. Comput. Sci. 412(15), 1364–1377 (2011)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Sarkar, A., Biswas, A., Dutt, M., Bhowmick, P., Bhattacharya, B.B.: A linear-time algorithm to compute the triangular hull of a digital object. Discret. Appl. Math. 216, 408–423 (2017)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Sarkar, A., Biswas, A., Dutt, M., Mondal, S.: Finding shortest triangular path and its family inside a digital object. Fundam. Inform. 159(3), 297–325 (2018)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Siqueira, M., Latecki, L.J., Tustison, N.J., Gallier, J.H., Gee, J.C.: Topological repairing of 3D digital images. J. Math. Imaging Vis. 30(3), 249–274 (2008)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Sossa-Azuela, J.H., Cuevas-Jiménez, E.V., Zaldivar-Navarro, D.: Computation of the Euler number of a binary image composed of hexagonal cells. J. Appl. Res. Technol. 8, 340–350 (2010)Google Scholar
  42. 42.
    Stelldinger, P., Latecki, L.J., Siqueira, M.: Topological equivalence between a 3D object and the reconstruction of its digital image. IEEE Trans. Pattern Anal. Mach. Intell. 29(1), 126–140 (2007)CrossRefGoogle Scholar
  43. 43.
    Wiederhold, P., Morales, S.: Thinning on quadratic, triangular, and hexagonal cell complexes. In: Brimkov, V.E., Barneva, R.P., Hauptman, H.A. (eds.) IWCIA 2008. LNCS, vol. 4958, pp. 13–25. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-78275-9_2CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Technical SciencesUniversity of Novi SadNovi SadSerbia

Personalised recommendations