Advertisement

Computing and Reducing Slope Complexes

  • Walter G. KropatschEmail author
  • Rocio M. Casablanca
  • Darshan Batavia
  • Rocio Gonzalez-Diaz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11382)

Abstract

In this paper we provide a new characterization of cell decomposition (called slope complex) of a given 2-dimensional continuous surface. Each patch (cell) in the decomposition must satisfy that there exists a monotonic path for any two points in the cell. We prove that any triangulation of such surface is a slope complex and explain how to obtain new slope complexes with a smaller number of slope regions decomposing the surface. We give the minimal number of slope regions by counting certain bounding edges of a triangulation of the surface obtained from its critical points.

Notes

Acknowledgments

This research has been partially supported by MINECO, FEDER/UE under grant MTM2015-67072-P. We thank the anonymous reviewers for their valuable comments.

References

  1. 1.
    Cerman, M., Gonzalez-Diaz, R., Kropatsch, W.: LBP and irregular graph pyramids. In: Azzopardi, G., Petkov, N. (eds.) CAIP 2015. LNCS, vol. 9257, pp. 687–699. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-23117-4_59CrossRefGoogle Scholar
  2. 2.
    Cerman, M., Janusch, I., Gonzalez-Diaz, R., Kropatsch, W.G.: Topology-based image segmentation using LBP pyramids. Mach. Vis. Appl. 27(8), 1161–1174 (2016)CrossRefGoogle Scholar
  3. 3.
    Edelsbrunner, H., Harer, J., Zomorodian, A.: Hierarchical Morse - Smale complexes for piecewise linear 2-manifolds. Discrete Comput. Geom. 30(1), 87–107 (2003)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Edelsbrunner, H., Harer, J., Natarajan, V., Pascucci, V.: Morse-Smale complexes for piecewise linear 3-manifolds. Symp. Comput. Geom. 2003, 361–370 (2009)zbMATHGoogle Scholar
  5. 5.
    Edelsbrunner, H., Harer, J.: The persistent Morse complex segmentation of a 3-manifold. In: Magnenat-Thalmann, N. (ed.) 3DPH 2009. LNCS, vol. 5903, pp. 36–50. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-10470-1_4CrossRefGoogle Scholar
  6. 6.
    Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)zbMATHGoogle Scholar
  7. 7.
    Latecki, L.J., Eckhardt, U., Rosenfeld, A.: Well-composed sets. Comput. Vis. Image Underst. 61, 70–83 (1995)CrossRefGoogle Scholar
  8. 8.
    Kropatsch, W.G., Casablanca, R.M., Batavia, D., Gonzalez-Diaz, R.: On the space between critical points. Submitted to 21st International Conference on Discrete Geometry for Computer Imagery (2019)Google Scholar
  9. 9.
    Peltier, S., Ion, A., Haxhimusa, Y., Kropatsch, W.G., Damiand, G.: Computing homology group generators of images using irregular graph pyramids. In: Escolano, F., Vento, M. (eds.) GbRPR 2007. LNCS, vol. 4538, pp. 283–294. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-72903-7_26CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Walter G. Kropatsch
    • 1
    Email author
  • Rocio M. Casablanca
    • 2
  • Darshan Batavia
    • 1
  • Rocio Gonzalez-Diaz
    • 2
  1. 1. Pattern Recognition and Image Processing Group 193/03TU WienViennaAustria
  2. 2.University of SevilleSevilleSpain

Personalised recommendations