Advertisement

Discrete Analog of the Jacobi Set for Vector Fields

  • A. N. Adilkhanov
  • A. V. PavlovEmail author
  • I. A. Taimanov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11382)

Abstract

The Jacobi set is a useful descriptor of mutual behavior of functions defined on a common domain. We introduce the piecewise linear Jacobi set for general vector fields on simplicial complexes. This definition generalizes the definition of the Jacobi set for gradients of functions introduced by Edelsbrunner and Harer.

Keywords

Jacobi set Vector fields Simplicial complex 

References

  1. 1.
    Edelsbrunner, H., Harer, J., Natarajan, V., Pascucci, V.: Local and global comparison of continuous functions. In: Proceedings of 16th IEEE Conference on Visualization, pp. 275–280. IEEE Computer Society (2004).  https://doi.org/10.1109/VISUAL.2004.68
  2. 2.
    Wolpert, N.: An exact and efficient approach for computing a cell in an arrangement of quadrics. Ph.D. thesis, Universität des Saarlandes (2002)Google Scholar
  3. 3.
    Wolpert, N.: Jacobi curves: computing the exact topology of arrangements of non-singular algebraic curves. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 532–543. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-39658-1_49CrossRefGoogle Scholar
  4. 4.
    Edelsbrunner, H., Harer, J.: Jacobi sets of multiple morse functions. In: Cucker, F., DeVore, R., Olver, P., Süli, E. (eds.) Foundations of Computational Mathematics, Minneapolis 2002. London Mathematical Society Lecture Note Series, pp. 37–57. Cambridge University Press, Cambridge (2004).  https://doi.org/10.1017/CBO9781139106962.003CrossRefzbMATHGoogle Scholar
  5. 5.
    Novikov, S., Taimanov, I.: Modern Geometric Structures and Fields. American Mathematical Society, Providence (2006)CrossRefGoogle Scholar
  6. 6.
    Natarajan, N.S.: Simplification of jacobi sets. In: Pascucci, V., Tricoche, X., Hagen, H., Tierny, J. (eds.) Topological Methods in Data Analysis and Visualization: Theory, Algorithms, and Applications. MATHVISUAL, pp. 91–102. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-15014-2_8CrossRefGoogle Scholar
  7. 7.
    Bhatia, H., Wang, B., Norgard, G., Pascucci, V., Bremer, P.T.: Local, smooth, and consistent jacobi set simplification. Comput. Geom.: Theory Appl. 48(4), 311–332 (2015).  https://doi.org/10.1016/j.comgeo.2014.10.009MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    NOAA Operational Model Archive and Distribution System. Data Transfer: NCEP GFS Forecasts (0.25 degree grid). http://nomads.ncep.noaa.gov/cgi-bin/filter_gfs_0p25_1hr.pl?dir=%2Fgfs.2018110100

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • A. N. Adilkhanov
    • 1
  • A. V. Pavlov
    • 2
    Email author
  • I. A. Taimanov
    • 3
  1. 1.National Laboratory “Astana”Nazarbayev UniversityAstanaRepublic of Kazakhstan
  2. 2.North-Eastern Federal UniversityYakutskRussia
  3. 3.Sobolev Institute of MathematicsNovosibirsk State UniversityNovosibirskRussia

Personalised recommendations