Advertisement

Quasi-Modes in Higher Dimension

  • Johannes Sjöstrand
Chapter
Part of the Pseudo-Differential Operators book series (PDO, volume 14)

Abstract

Recall that if a(x, ξ) and b(x, ξ) are two C1-functions defined on some domain in \({\mathbf {R}}^{2n}_{x,\xi }\), then we can define the Poisson bracket to be the C0-function on the same domain given by
$$\displaystyle \{ a,b\} =a^{\prime }_\xi \cdot b^{\prime }_x-a^{\prime }_x \cdot b^{\prime }_\xi =H_a(b). $$
Here \(H_a=a^{\prime }_\xi \cdot \partial _x-a^{\prime }_x\cdot \partial _\xi \) denotes the Hamilton vector field of a. The following result is due to Zworski, who obtained it via a semi-classical reduction from the above mentioned result of Hörmander. A direct proof was given in Dencker et al. and here we give a variant. We will assume some familiarity with symplectic geometry.

References

  1. 33.
    E.B. Davies, Semi-classical states for non-self-adjoint Schrödinger operators. Commun. Math. Phys. 200(1), 35–41 (1999)CrossRefGoogle Scholar
  2. 40.
    N. Dencker, J. Sjöstrand, M. Zworski, Pseudospectra of semiclassical (pseudo-)differential operators, Commun. Pure Appl. Math. 57(3), 384–415 (2004)MathSciNetCrossRefGoogle Scholar
  3. 51.
    A. Grigis, J. Sjöstrand, Microlocal Analysis for Differential Operators. London Mathematical Society Lecture Notes Series, vol. 196 (Cambridge University Press, Cambridge, 1994)Google Scholar
  4. 74.
    M. Hitrik, J. Sjöstrand, Two minicourses on analytic microlocal analysis, in Algebraic and Analytic Microlocal Analysis, AAMA, Evanston, Illinois, USA, 2012 and 2013. Springer Proceedings in Mathematics & Statistics, vol. 269 (2018), pp. 483–540. http://arxiv.org/abs/1508.00649
  5. 78.
    L. Hörmander, Differential equations without solutions. Math. Ann. 140, 169–173 (1960)MathSciNetCrossRefGoogle Scholar
  6. 79.
    L. Hörmander, Differential operators of principal type. Math. Ann. 140, 124–146 (1960)MathSciNetCrossRefGoogle Scholar
  7. 82.
    L. Hörmander, On the Existence and the Regularity of Solutions of Linear Pseudo-Differential Equations. Série des Conférences de l’Union Mathématique Internationale, No. 1. Monographie No. 18 de l’Enseignement Mathématique. Secrétariat de l’Enseignement Mathématique, 69 pp. (Université de Genève, Geneva, 1971)Google Scholar
  8. 83.
    L. Hörmander, The Analysis of Linear Partial Differential Operators. I–IV, Grundlehren der Mathematischen Wissenschaften, vols. 256, 257, 274, 275 (Springer, Berlin, 1983/1985)Google Scholar
  9. 102.
    A. Melin, J. Sjöstrand, Fourier Integral Operators with Complex-Valued Phase Functions. Fourier Integral Operators and Partial Differential Equations (Colloq. Internat., Univ. Nice, Nice, 1974), pp. 120–223. Lecture Notes in Mathematics, vol. 459 (Springer, Berlin, 1975)Google Scholar
  10. 104.
    A. Melin, J. Sjöstrand, Determinants of pseudodifferential operators and complex deformations of phase space. Methods Appl. Anal. 9(2), 177–238 (2002). https://arxiv.org/abs/math/0111292 MathSciNetzbMATHGoogle Scholar
  11. 111.
    K. Pravda-Starov, Étude du pseudo-spectre d’opérateurs non auto-adjoints, thesis, 2006. http://tel.archives-ouvertes.fr/docs/00/10/98/95/PDF/manuscrit.pdf
  12. 132.
    J. Sjöstrand, Singularités analytiques microlocales. Astérisque 95 (Société Mathématique de France, Paris, 1982), pp. 1–166Google Scholar
  13. 161.
    M. Zworski, A remark on a paper of E. B. Davies: “Semi-classical states for non-self-adjoint Schrödinger operators”. Proc. Am. Math. Soc. 129(10), 2955–2957 (2001)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Johannes Sjöstrand
    • 1
  1. 1.Université de Bourgogne Franche-ComtéDijonFrance

Personalised recommendations