Advertisement

Coalition Resilient Outcomes in Max k-Cut Games

  • Raffaello Carosi
  • Simone Fioravanti
  • Luciano Gualà
  • Gianpiero MonacoEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11376)

Abstract

We investigate strong Nash equilibria in the max k-cut game, where we are given an undirected edge-weighted graph together with a set \(\{1,\ldots , k\}\) of k colors. Nodes represent players and edges capture their mutual interests. The strategy set of each player v consists of the k colors. When players select a color they induce a k-coloring or simply a coloring. Given a coloring, the utility (or payoff) of a player u is the sum of the weights of the edges \(\{u,v\}\) incident to u, such that the color chosen by u is different from the one chosen by v. Such games form some of the basic payoff structures in game theory, model lots of real-world scenarios with selfish agents and extend or are related to several fundamental classes of games.

Very little is known about the existence of strong equilibria in max k-cut games. In this paper we make some steps forward in the comprehension of it. We first show that improving deviations performed by minimal coalitions can cycle, and thus answering negatively the open problem proposed in [13]. Next, we turn our attention to unweighted graphs. We first show that any optimal coloring is a 5-SE in this case. Then, we introduce x-local strong equilibria, namely colorings that are resilient to deviations by coalitions such that the maximum distance between every pair of nodes in the coalition is at most x. We prove that 1-local strong equilibria always exist. Finally, we show the existence of strong Nash equilibria in several interesting specific scenarios.

References

  1. 1.
    Apt, K.R., de Keijzer, B., Rahn, M., Schäfer, G., Simon, S.: Coordination games on graphs. Int. J. Game Theory 46(3), 851–877 (2017).  https://doi.org/10.1007/s00182-016-0560-8MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Aumann, R.J.: Acceptable points in games of perfect information. Pac. J. Math. 10, 381–417 (1960)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Aziz, H., Savani, R.: Hedonic games. In: Handbook of Computational Social Choice, chapter 15. Cambridge University Press (2016)Google Scholar
  4. 4.
    Bilò, D., Gualà, L., Leucci, S., Proietti, G.: Locality-based network creation games. In: 26th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA, pp. 277–286 (2014)Google Scholar
  5. 5.
    Bilò, V., Fanelli, A., Flammini, M., Monaco, G., Moscardelli, L.: Nash stable outcomes in fractional hedonic games: existence, efficiency and computation. J. Artif. Intell. 62, 315–371 (2018)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bogomolnaia, A., Jackson, M.O.: The stability of hedonic coalition structures. Games Econ. Behav. 38, 201–230 (2002).  https://doi.org/10.1006/game.2001.0877MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Carosi, R., Fioravanti, S., Gualà, L., Monaco, G.: Coalition resilient outcomes in max \(k\)-cut games. CoRR, abs/1810.09278 (2019)Google Scholar
  8. 8.
    Carosi, R., Flammini, M., Monaco, G.: Computing approximate pure nash equilibria in digraph k-coloring games. In: Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems, AAMAS, pp. 911–919 (2017)Google Scholar
  9. 9.
    Carosi, R., Monaco, G.: Generalized graph k-coloring games. In: Proceedings of the 24th International Conference on Computing and Combinatorics, COCOON, pp. 268–279 (2018).  https://doi.org/10.1007/978-3-319-94776-1_23Google Scholar
  10. 10.
    Cord-Landwehr, A., Lenzner, P.: Network creation games: think global – act local. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015. LNCS, vol. 9235, pp. 248–260. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48054-0_21CrossRefGoogle Scholar
  11. 11.
    Feldman, M., Friedler, O.: A unified framework for strong price of anarchy in clustering games. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 601–613. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-47666-6_48CrossRefGoogle Scholar
  12. 12.
    Gourvès, L., Monnot, J.: On strong equilibria in the max cut game. In: Leonardi, S. (ed.) WINE 2009. LNCS, vol. 5929, pp. 608–615. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-10841-9_62CrossRefGoogle Scholar
  13. 13.
    Gourvès, L., Monnot, J.: The max k-cut game and its strong equilibria. In: Kratochvíl, J., Li, A., Fiala, J., Kolman, P. (eds.) TAMC 2010. LNCS, vol. 6108, pp. 234–246. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13562-0_22CrossRefzbMATHGoogle Scholar
  14. 14.
    Harks, T., Klimm, M., Möhring, R.H.: Strong nash equilibria in games with the lexicographical improvement property. Int. J. Game Theory 42(2), 461–482 (2013).  https://doi.org/10.1007/s00182-012-0322-1CrossRefzbMATHGoogle Scholar
  15. 15.
    Hoefer, M.: Cost sharing and clustering under distributed competition. Ph.D. thesis, University of Konstanz (2007)Google Scholar
  16. 16.
    Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations. IRSS, pp. 85–103. Springer, Boston (1972).  https://doi.org/10.1007/978-1-4684-2001-2_9CrossRefGoogle Scholar
  17. 17.
    Kearns, M.J., Littman, M.L., Singh, S.P.: Graphical models for game theory. In: Proceedings of the 17th Conference in Uncertainty in Artificial Intelligence, UAI, pp. 253–260 (2001)Google Scholar
  18. 18.
    Kun, J., Powers, B., Reyzin, L.: Anti-coordination games and stable graph colorings. In: Vöcking, B. (ed.) SAGT 2013. LNCS, vol. 8146, pp. 122–133. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-41392-6_11CrossRefGoogle Scholar
  19. 19.
    Leonardi, S., Sankowski, P.: Network formation games with local coalitions. In: Proceedings of the Twenty-Sixth Annual ACM Symposium on Principles of Distributed Computing, PODC, pp. 299–305 (2007)Google Scholar
  20. 20.
    Monaco, G., Moscardelli, L., Velaj, Y.: Stable outcomes in modified fractional hedonic games. In: Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems, AAMAS, pp. 937–945 (2018)Google Scholar
  21. 21.
    Panagopoulou, P.N., Spirakis, P.G.: A game theoretic approach for efficient graph coloring. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 183–195. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-92182-0_19CrossRefGoogle Scholar
  22. 22.
    Schäffer, A.A., Yannakakis, M.: Simple local search problems that are hard to solve. SIAM J. Comput. 20(1), 56–87 (1991).  https://doi.org/10.1137/0220004MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Gran Sasso Science InstituteL’AquilaItaly
  2. 2.University of Rome “Tor Vergata”RomeItaly
  3. 3.DISIMUniversity of L’AquilaL’AquilaItaly

Personalised recommendations