Advertisement

Sorting Networks on Restricted Topologies

  • Indranil Banerjee
  • Dana Richards
  • Igor Shinkar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11376)

Abstract

The sorting number of a graph with n vertices is the minimum depth of a sorting network with n inputs and n outputs that uses only the edges of the graph to perform comparisons. Many known results on sorting networks can be stated in terms of sorting numbers of different classes of graphs. In this paper we show the following general results about the sorting number of graphs.

  1. 1.

    Any n-vertex graph that contains a simple path of length d has a sorting network of depth \(O(n \log (n/d))\).

     
  2. 2.

    Any n-vertex graph with maximal degree \(\varDelta \) has a sorting network of depth \(O(\varDelta n)\).

     

We also provide several results relating the sorting number of a graph with its routing number, size of its maximum matching, and other well known graph properties. Additionally, we give some new bounds on the sorting number for some typical graphs.

Keywords

Sorting networks Matchings in graphs Routing via matchings 

References

  1. 1.
    Ajtai, M., Komlós, J., Szemerédi, E.: An \(O(n log n)\) sorting network. In: Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing, pp. 1–9. ACM (1983)Google Scholar
  2. 2.
    Alon, N., Chung, F.R., Graham, R.L.: Routing permutations on graphs via matchings. SIAM J. Discrete Math. 7(3), 513–530 (1994)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Angel, O., Shinkar, I.: A tight upper bound on acquaintance time of graphs. Graphs Comb. 32(5), 1667–1673 (2016). arXiv:1307.6029MathSciNetCrossRefGoogle Scholar
  4. 4.
    Babai, L., Szegedy, M.: Local expansion of symmetrical graphs. Comb. Probab. Comput. 1(01), 1–11 (1992)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Batcher, K.E.: Sorting networks and their applications. In: Proceedings of the 30 April–2 May 1968, Spring Joint Computer Conference, pp. 307–314. ACM (1968)Google Scholar
  6. 6.
    Benjamini, I., Shinkar, I., Tsur, G.: Acquaintance time of a graph. SIAM J. Discrete Math. 28(2), 767–785 (2014)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Knuth, D.E.: The Art of Computer Programming: Sorting and Searching, vol. 3. Addison Wesley Longman Publishing Co., Inc., Redwood City (1998)zbMATHGoogle Scholar
  8. 8.
    Kunde, M.: Optimal sorting on multi-dimensionally mesh-connected computers. In: Brandenburg, F.J., Vidal-Naquet, G., Wirsing, M. (eds.) STACS 1987. LNCS, vol. 247, pp. 408–419. Springer, Heidelberg (1987).  https://doi.org/10.1007/BFb0039623CrossRefGoogle Scholar
  9. 9.
    Leighton, T., Plaxton, C.G.: Hypercubic sorting networks. SIAM J. Comput. 27(1), 1–47 (1998)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Plaxton, C.G., Suel, T.: A super-logarithmic lower bound for hypercubic sorting networks. In: Abiteboul, S., Shamir, E. (eds.) ICALP 1994. LNCS, vol. 820, pp. 618–629. Springer, Heidelberg (1994).  https://doi.org/10.1007/3-540-58201-0_103CrossRefGoogle Scholar
  11. 11.
    Schnorr, C.P., Shamir, A.: An optimal sorting algorithm for mesh connected computers. In: Proceedings of the Eighteenth Annual ACM Symposium on Theory of Computing, pp. 255–263. ACM (1986)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Louisiana State UniversityBaton RougeUSA
  2. 2.George Mason UniversityFairfaxUSA
  3. 3.Simon Fraser UniversityBurnabyCanada

Personalised recommendations