Priority Scheduling in the Bamboo Garden Trimming Problem

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11376)


We consider the Bamboo Garden Trimming (BGT) problem introduced in [Gąsieniec et al., SOFSEM’17]. The problem is NP-hard due to its close relationship to Pinwheel scheduling. The garden with n bamboos is an analogue of a system of n machines which have to be attended (e.g., serviced) with different frequencies. During each day, bamboo \(b_i\) grows an extra height \(h_i,\) for \(i=1,\dots ,n\) and, on the conclusion of the day, at most one bamboo is cut all its current height. The goal is to design a perpetual schedule of cuts to keep the height of the tallest ever bamboo as low as possible.

Our contribution is twofold, and is both theoretical and experimental. In particular, we focus on understanding what we call priority schedulings, i.e. cutting strategies where priority is given to bamboos whose current height is above a threshold greater than or equal to \(H=\sum _{i=1}^n h_i\). Value H represents the total daily growth of the system and it is known that one cannot keep bamboos in the garden below this threshold indefinitely.

We prove that for any distribution of integer growth rates \(h_1,\dots ,h_n\) and any priority scheduling, the system stabilises in a fixed cycle of cuts. Then, we focus on the so-called \(\mathtt {ReduceMax}_{}\) strategy, a greedy priority scheduling which each day cuts the tallest bamboo, regardless of the growth rates distribution. \(\mathtt {ReduceMax}_{}\) is known to provide a \(O(\log n)\)-approximation, w.r.t. the lower bound H. We prove that, if \(\mathtt {ReduceMax}_{}\) stabilises in a round-robin type cycle, then it guarantees 2-approximation. We conjecture that \(\mathtt {ReduceMax}_{}\) is 2-approximating for the BGT problem, hence we conduct an extended experimental evaluation, on all bounded in size integer instances of BGT, to support our conjecture and to compare \(\mathtt {ReduceMax}_{}\) with other relevant scheduling algorithms. Our results show that \(\mathtt {ReduceMax}_{}\) provides 2-approximation in such instances, and it always outperforms other considered strategies, even those for which better worst case approximation guarantees have been proven.



Authors deeply thank Leszek Gąsieniec for introducing them to the problem and for very useful discussions.


  1. 1.
    Alshamrani, S., Kowalski, D.R., Gąsieniec, L.: How reduce max algorithm behaves with symptoms appearance on virtual machines in clouds. In: Proceedings of the IEEE International Conference CIT/IUCC/DASC/PICOM, pp. 1703–1710 (2015)Google Scholar
  2. 2.
    Baruah, S.K., Cohen, N.K., Plaxton, C.G., Varvel, D.A.: Proportionate progress: a notion of fairness in resource allocation. Algorithmica 15(6), 600–625 (1996)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Baruah, S.K., Lin, S.-S.: Pfair scheduling of generalized pinwheel task systems. IEEE Trans. Comput. 47(7), 812–816 (1998)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Baruah, S., Rosier, L., Tulchinsky, I., Varvel, D.: The complexity of periodic maintenance. In: Proceedings of the 1990 International Computer Symposium, pp. 315–320 (1990)Google Scholar
  5. 5.
    Bender, M.A., et al.: The minimum backlog problem. Theoret. Comput. Sci. 605, 51–61 (2015)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bodlaender, M.H.L., Hurkens, C.A.J., Kusters, V.J.J., Staals, F., Woeginger, G.J., Zantema, H.: Cinderella versus the wicked Stepmother. In: Baeten, J.C.M., Ball, T., de Boer, F.S. (eds.) TCS 2012. LNCS, vol. 7604, pp. 57–71. Springer, Heidelberg (2012). Scholar
  7. 7.
    Chan, M.Y., Chin, F.Y.L.: General schedulers for the pinwheel problem based on double-integer reduction. IEEE Trans. Comput. 41(6), 755–768 (1992)CrossRefGoogle Scholar
  8. 8.
    Chan, M.Y., Chin, F.: Schedulers for larger classes of pinwheel instances. Algorithmica 9(5), 425–462 (1993)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Chrobak, M., Csirik, J., Imreh, C., Noga, J., Sgall, J., Woeginger, G.J.: The buffer minimization problem for multiprocessor scheduling with conflicts. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 862–874. Springer, Heidelberg (2001). Scholar
  10. 10.
    Chuangpishit, H., Czyzowicz, J., Gąsieniec, L., Georgiou, K., Jurdziński, T., Kranakis, E.: Patrolling a path connecting a set of points with unbalanced frequencies of visits. In: Tjoa, A.M., Bellatreche, L., Biffl, S., van Leeuwen, J., Wiedermann, J. (eds.) SOFSEM 2018. LNCS, vol. 10706, pp. 367–380. Springer, Cham (2018). Scholar
  11. 11.
    Collins, A., et al.: Optimal patrolling of fragmented boundaries. In: Proceedings of the Twenty-Fifth Annual ACM Symposium on Parallelism in Algorithms and Architectures, SPAA, New York, USA, pp. 241–250 (2013)Google Scholar
  12. 12.
    Czyzowicz, J., Gąsieniec, L., Kosowski, A., Kranakis, E.: Boundary patrolling by mobile agents with distinct maximal speeds. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 701–712. Springer, Heidelberg (2011). Scholar
  13. 13.
    Gąsieniec, L., Klasing, R., Levcopoulos, C., Lingas, A., Min, J., Radzik, T.: Bamboo garden trimming problem (perpetual maintenance of machines with different attendance urgency factors). In: Steffen, B., Baier, C., van den Brand, M., Eder, J., Hinchey, M., Margaria, T. (eds.) SOFSEM 2017. LNCS, vol. 10139, pp. 229–240. Springer, Cham (2017). Scholar
  14. 14.
    Gąsieniec, L., Klasing, R., Martin, R., Navarra, A., Zhang, X.: Fast periodic graph exploration with constant memory. J. Comput. Syst. Sci. 74(5), 802–822 (2008)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Holte, R., Mok, A., Rosier, L., Tulchinsky, I., Varvel, D.: The pinwheel: a real-time scheduling problem. In: II: Software Track, Proceedings of the Twenty-Second Annual Hawaii International Conference on System Sciences, vol. 2, pp. 693–702, January 1989Google Scholar
  16. 16.
    Holte, R., Rosier, L., Tulchinsky, I., Varvel, D.: Pinwheel scheduling with two distinct numbers. Theoret. Comput. Sci. 100(1), 105–135 (1992)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Hsueh, C., Lin, K.: An optimal pinwheel scheduler using the single-number reduction technique. In: Proceedings of the 17th IEEE Real-Time Systems Symposium, RTSS 1996, pp. 196–205 (1996)Google Scholar
  18. 18.
    Kosowski, A., Navarra, A.: Graph decomposition for memoryless periodic exploration. Algorithmica 63(1–2), 26–38 (2012)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Lin, S.-S., Lin, K.-J.: A pinwheel scheduler for three distinct numbers with a tight schedulability bound. Algorithmica 19(4), 411–426 (1997)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Mok, A., Rosier, L., Tulchinski, I., Varvel, D.: Algorithms and complexity of the periodic maintenance problem. In: Proceedings of the 15th Symposium on Microprocessing and Microprogramming (EUROMICRO), pp. 657–664 (1989)CrossRefGoogle Scholar
  21. 21.
    Ntafos, S.: On gallery watchmen in grids. Inf. Process. Lett. 23(2), 99–102 (1986)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Romer, T.H., Rosier, L.E.: An algorithm reminiscent of euclidean-gcd for computing a function related to pinwheel scheduling. Algorithmica 17(1), 1–10 (1997)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Serafini, P., Ukovich, W.: A mathematical model for periodic scheduling problems. SIAM J. Discret. Math. 2(4), 550–581 (1989)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Urrutia, J.: Art gallery and illumination problems. In: Handbook of Computational Geometry, vol. 1, no. 1, pp. 973–1027 (2000)CrossRefGoogle Scholar
  25. 25.
    Hardy, G.H., Ramanujan, S.: Asymptotic formulas in combinatorial analysis. Proc. Lond. Math. Soc. 17, 75–115 (1918)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Information Engineering, Computer Science and MathematicsUniversity of L’AquilaL’AquilaItaly
  2. 2.Department of Mathematics and Computer ScienceUniversity of PerugiaPerugiaItaly

Personalised recommendations