Advertisement

Outlook and Conclusions

  • Marcus SeidelEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Three application ideas are derived from the knowledge and the achievements which have been accomplished through the experiments and simulations presented in the Chaps.  2 4 of this thesis. The author expects that each of them could be realized on the time scale of about one year.

References

  1. 1.
    Südmeyer, T., et al. (2008). Femtosecond laser oscillators for high-field science. Nature Photonics, 2, 599-604.  https://doi.org/10.1038/nphoton.2008.194.CrossRefGoogle Scholar
  2. 2.
    Beetar, J . E., Gholam-Mirzaei, S., & Chini, M. (2018). Spectral broadening and pulse compression of a 400 \(\mu \)J, 20 W Yb:KGW laser using a multi-plate medium. Applied Physics Letters, 112, 051102.  https://doi.org/10.1063/1.5018758.ADSCrossRefGoogle Scholar
  3. 3.
    Herriott, D. R., & Schulte, H. J. (1965). Folded optical delay lines. Applied Optics, 4, 883–889.  https://doi.org/10.1364/AO.4.000883.ADSCrossRefGoogle Scholar
  4. 4.
    Brons, J., et al. (2017). Efficient, high-power, all-bulk spectral broadening in a quasi-waveguide. In 2017 European Conference on Lasers and Electro-Optics - European Quantum Electronics Conference, CF–9.4. IEEE.  https://doi.org/10.1109/CLEOE-EQEC.2017.8086741.
  5. 5.
    Fritsch, K., Poetzlberger, M., Pervak, V., Brons, J., & Pronin, O. (2018). All-solid-state multipass spectral broadening to sub-20 fs. Optics Letters, 43, 4643–4646.  https://doi.org/10.1364/OL.43.004643.ADSCrossRefGoogle Scholar
  6. 6.
    Russbueldt, P., et al. (2015). Innoslab amplifiers. IEEE Journal of Selected Topics in Quantum Electronics, 21, 447–463.  https://doi.org/10.1109/JSTQE.2014.2333234.ADSCrossRefGoogle Scholar
  7. 7.
    Schulte, J., Sartorius, T., Weitenberg, J., Vernaleken, A., & Russbueldt, P. (2016). Nonlinear pulse compression in a multi-pass cell. Optics Letters, 41, 4511–4514.  https://doi.org/10.1364/OL.41.004511.ADSCrossRefGoogle Scholar
  8. 8.
    Hädrich, S., et al. (2015). Exploring new avenues in high repetition rate table-top coherent extreme ultraviolet sources. Light: Science and Applications, 4, e320.  https://doi.org/10.1038/lsa.2015.93.CrossRefGoogle Scholar
  9. 9.
    Brons, J., et al. (2016). Powerful 100-fs-scale Kerr-lens mode-locked thin-disk oscillator. Optics Letters, 41, 3567-3570.  https://doi.org/10.1364/OL.41.003567.ADSCrossRefGoogle Scholar
  10. 10.
    Krausz, F., & Ivanov, M. (2009). Attosecond physics. Reviews of Modern Physics, 81, 163–234.  https://doi.org/10.1103/RevModPhys.81.163.ADSCrossRefGoogle Scholar
  11. 11.
    Schiffrin, A., et al. (2013). Optical-field-induced current in dielectrics. Nature, 493, 70-74.  https://doi.org/10.1038/nature11567.ADSCrossRefGoogle Scholar
  12. 12.
    Krausz, F., & Stockman, M. I. (2014). Attosecond metrology: From electron capture to future signal processing. Nature Photonics, 8, 205–213.  https://doi.org/10.1038/nphoton.2014.28.ADSCrossRefGoogle Scholar
  13. 13.
    Paasch-Colberg, T., et al. (2016). Sub-cycle optical control of current in a semiconductor: From the multiphoton to the tunneling regime. Optica, 3, 1358-1361.  https://doi.org/10.1364/OPTICA.3.001358.CrossRefGoogle Scholar
  14. 14.
    Ghimire, S., et al. (2011). Observation of high-order harmonic generation in a bulk crystal. Nature Physics, 7, 138–141.  https://doi.org/10.1038/nphys1847.ADSCrossRefGoogle Scholar
  15. 15.
    Schubert, O., et al. (2014). Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations. Nature Photonics, 8, 119-123.  https://doi.org/10.1038/nphoton.2013.349.ADSCrossRefGoogle Scholar
  16. 16.
    Fortier, T. M., et al. (2004). Carrier-envelope phase-controlled quantum interference of injected photocurrents in semiconductors. Physical Review Letters, 92, 147403.  https://doi.org/10.1103/PhysRevLett.92.147403.ADSCrossRefGoogle Scholar
  17. 17.
    Hache, A., Sipe, J. E., & van Driel, H. M. (1998). Quantum interference control of electrical currents in gaas. IEEE Journal of Quantum Electronics, 34, 1144–1154.  https://doi.org/10.1109/3.687857.ADSCrossRefGoogle Scholar
  18. 18.
    Haché, A., et al. (1997). Observation of coherently controlled photocurrent in unbiased, bulk gaas. Physical Review Letters, 78, 306–309.  https://doi.org/10.1103/PhysRevLett.78.306.ADSCrossRefGoogle Scholar
  19. 19.
    Roos, P. A., Quraishi, Q., Cundiff, S. T., Bhat, R. D. R., & Sipe, J. E. (2003). Characterization of quantum interference control of injected currents in LT-GaAs for carrier-envelope phase measurements. Optics Express, 11, 2081–2090.  https://doi.org/10.1364/OE.11.002081.ADSCrossRefGoogle Scholar
  20. 20.
    Roos, P. A., et al. (2005). Solid-state carrier-envelope phase stabilization via quantum interference control of injected photocurrents. Optics Letters, 30, 735-737.  https://doi.org/10.1364/OL.30.000735.ADSCrossRefGoogle Scholar
  21. 21.
    Keiber, S., et al. (2014). Investigation of laser-induced currents in large-band-gap dielectrics. In 19th International Conference on Ultrafast Phenomena, 10.Thu.C.6. Optical Society of America.  https://doi.org/10.1364/UP.2014.10.Thu.C.6.
  22. 22.
    Kruchinin, S. Y., Korbman, M., & Yakovlev, V. S. (2013). Theory of strong-field injection and control of photocurrent in dielectrics and wide band gap semiconductors. Physical Review B, 87, 115201.  https://doi.org/10.1103/PhysRevB.87.115201.ADSCrossRefGoogle Scholar
  23. 23.
    Kazempour, A. (2015). Quasiparticle lifetimes in rutile and anatase TiO\(_2\): GW approximation. Physica Scripta, 90, 025804. http://stacks.iop.org/1402-4896/90/i=2/a=025804.ADSCrossRefGoogle Scholar
  24. 24.
    Haas, J., & Mizaikoff, B. (2016). Advances in mid-infrared spectroscopy for chemical analysis. Annual Review of Analytical Chemistry, 9, 45–68.  https://doi.org/10.1146/annurev-anchem-071015-041507.ADSCrossRefGoogle Scholar
  25. 25.
    Cossel, K. C., et al. (2017). Gas-phase broadband spectroscopy using active sources: Progress, status, and applications (invited). Journal of the Optical Society of America B, 34, 104–129.  https://doi.org/10.1364/JOSAB.34.000104.CrossRefGoogle Scholar
  26. 26.
    Pupeza, I., et al. (2017). Field-resolved spectroscopy in the molecular fingerprint region. In 2017 European Conference on Lasers and Electro-Optics - European Quantum Electronics Conference, CH–2.4. IEEE, Munich.  https://doi.org/10.1109/CLEOE-EQEC.2017.8086859.
  27. 27.
    Keiber, S., et al. (2016). Electro-optic sampling of near-infrared waveforms. Nature Photonics, 10, 159-162.  https://doi.org/10.1038/nphoton.2015.269.ADSCrossRefGoogle Scholar
  28. 28.
    Pupeza, I., et al. (2015). High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate. Nature Photonics, 9, 721–724, Letter.  https://doi.org/10.1038/nphoton.2015.179.ADSCrossRefGoogle Scholar
  29. 29.
    Lanin, A. A., Voronin, A. A., Fedotov, A. B., & Zheltikov, A. M. (2014). Time-domain spectroscopy in the mid-infrared. Scientific Reports, 4, 6670.  https://doi.org/10.1038/srep06670.ADSCrossRefGoogle Scholar
  30. 30.
    Wu, Q., & Zhang, X.-C. (1995). Free-space electro-optic sampling of Terahertz beams. Applied Physics Letters, 67, 3523–3525.  https://doi.org/10.1063/1.114909.ADSCrossRefGoogle Scholar
  31. 31.
    Lee, K. F., Kubarych, K. J., Bonvalet, A., & Joffre, M. (2008). Characterization of mid-infrared femtosecond pulses (invited). Journal of the Optical Society of America B, 25, A54–A62.  https://doi.org/10.1364/JOSAB.25.000A54.ADSCrossRefGoogle Scholar
  32. 32.
    Rogalski, A. (2012). History of infrared detectors. Opto-Electronics Review, 20, 279–308.  https://doi.org/10.2478/s11772-012-0037-7.ADSCrossRefGoogle Scholar
  33. 33.
    Habel, F., & Pervak, V. (2017). Dispersive mirror for the mid-infrared spectral range of 9–11.5 \(\mu \)m. Applied Optics, 56, C71–C74.  https://doi.org/10.1364/AO.56.000C71.CrossRefGoogle Scholar
  34. 34.
    Huber, M., et al. (2017). Active intensity noise suppression for a broadband mid-infrared laser source. Optics Express, 25, 22499-22509.  https://doi.org/10.1364/OE.25.022499.ADSCrossRefGoogle Scholar
  35. 35.
    Prinz, S., et al. (2014). Active pump-seed-pulse ynchronization for OPCPA with sub-2-fs residual timing jitter. Optics Express, 22, 31050–31056.  https://doi.org/10.1364/OE.22.031050.ADSCrossRefGoogle Scholar
  36. 36.
    Manzoni, C., et al. (2012). Coherent synthesis of ultra-broadband optical parametric amplifiers. Optics Letters, 37, 1880–1882.  https://doi.org/10.1364/OL.37.001880.ADSCrossRefGoogle Scholar
  37. 37.
    Xin, M., et al. (2017). Attosecond precision multi-kilometer laser-microwave network. Light: Science and Applications, 6, e16187.  https://doi.org/10.1038/lsa.2016.187.CrossRefGoogle Scholar
  38. 38.
    Walbran, M., Gliserin, A., Jung, K., Kim, J., & Baum, P. (2015). 5-femtosecond laser-electron synchronization for pump-probe crystallography and diffraction. Physical Review Applied, 4, 044013.  https://doi.org/10.1103/PhysRevApplied.4.044013.ADSCrossRefGoogle Scholar
  39. 39.
    Bauer, D., Zawischa, I., Sutter, D . H., Killi, A., & Dekorsy, T. (2012). Mode-locked Yb:YAG thin-disk oscillator with 41 \(\mu \)J pulse energy at 145 W average infrared power and high power frequency conversion. Optics Express, 20, 9698–9704.  https://doi.org/10.1364/OE.20.009698.ADSCrossRefGoogle Scholar
  40. 40.
    Saraceno, C. J., et al. (2012). 275 W average output power from a femtosecond thin disk oscillator operated in a vacuum environment. Optics Express, 20, 23535-23541.  https://doi.org/10.1364/OE.20.023535.ADSCrossRefGoogle Scholar
  41. 41.
    Brons, J., et al. (2014). Energy scaling of Kerr-lens mode-locked thin-disk oscillators. Optics Letters, 39, 6442–6445.  https://doi.org/10.1364/OL.39.006442.ADSCrossRefGoogle Scholar
  42. 42.
    Saraceno, C. J., et al. (2014). Ultrafast thin-disk laser with 80 \(mu \)J pulse energy and 242 W of average power. Optics Letters, 39, 9-12.  https://doi.org/10.1364/OL.39.000009.ADSCrossRefGoogle Scholar
  43. 43.
    Seidel, M., et al. (2017). Efficient high-power ultrashort pulse compression in self-defocusing bulk media. Scientific Reports, 7, 1410.  https://doi.org/10.1038/s41598-017-01504-x.ADSCrossRefGoogle Scholar
  44. 44.
    Spectra-Physics. FemtosourceXL. Retrieved April 10, 2017 from http://www.spectra-physics.com/products/ultrafast-lasers/femtosource-xl.
  45. 45.
    Zhang, J., et al. (2018). Multi-mW, few-cycle mid-infrared continuum spanning from 500 to 2250 cm\(^{-1}\). Light: Science & Applications, e17180.  https://doi.org/10.1038/lsa.2017.180.ADSCrossRefGoogle Scholar
  46. 46.
    Fattahi, H., et al. (2016). High-power, 1-ps, all-Yb:YAG thin-disk regenerative amplifier. Optics Letters, 41, 1126-1129.  https://doi.org/10.1364/OL.41.001126.ADSCrossRefGoogle Scholar
  47. 47.
    Nubbemeyer, T., et al. (2017). 1 kW, 200 mJ picosecond thin-disk laser system. Optics Letters, 42, 1381–1384.  https://doi.org/10.1364/OL.42.001381.ADSCrossRefGoogle Scholar
  48. 48.
    Znakovskaya, I., et al. (2014). Dual frequency comb spectroscopy with a single laser. Optics Letters, 39, 5471-5474.  https://doi.org/10.1364/OL.39.005471.ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institut de Science et d’Ingénierie SupramoléculairesStrasbourgFrance

Personalised recommendations