Advertisement

Power Scalable Concepts

  • Marcus SeidelEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

This chapter of the dissertation will discuss the average and peak power scalability of the achievements described in Chap.  2, i.e. few-cycle pulse generation and CEP stabilization. In the thesis’ introduction, this has been proclaimed as the general goal of current femtosecond laser development. However, there are often application dependent preferences in scaling either pulse energy or repetition rate, rather than both. A few examples shall be sketched to enable a more specific discussion of the results presented in the ensuing sections.

References

  1. 1.
    Hodgman, S. S., et al. (2009). Metastable helium: A new determination of the longest atomic excited-state lifetime. Physical Review Letters, 3, 053002.  https://doi.org/10.1103/PhysRevLett.103.053002.ADSCrossRefGoogle Scholar
  2. 2.
    Baum, P., & Zewail, A. H. (2009). 4D attosecond imaging with free electrons: Diffraction methods and potential application. Chemical Physics, 366, 2–8.  https://doi.org/10.1016/j.chemphys.2009.07.013.ADSCrossRefGoogle Scholar
  3. 3.
    Hoover, E. E., & Squier, J. A. (2013). Advances in multiphoton microscopy technology. Nature Photonics, 7, 93–101.  https://doi.org/10.1038/nphoton.2012.361.ADSCrossRefGoogle Scholar
  4. 4.
    Haché, A., et al. (1997). Observation of coherently controlled photocurrent in unbiased, bulk GaAs. Physical Review Letters, 8, 306–309.  https://doi.org/10.1103/PhysRevLett.78.306.ADSCrossRefGoogle Scholar
  5. 5.
    Hache, A., Sipe, J. E., & van Driel, H. M. (1998). Quantum interference control of electrical currents in GaAs. IEEE Journal of Quantum Electronics, 4, 1144–1154.  https://doi.org/10.1109/3.687857.ADSCrossRefGoogle Scholar
  6. 6.
    Agrawal, G. (2013). Chapter 2 - pulse propagation in fibers. In Nonlinear fiber optics. Optics and photonics (5th ed., pp. 27–56). Boston: Academic Press.  https://doi.org/10.1016/B978-0-12-397023-7.00002-4.CrossRefGoogle Scholar
  7. 7.
    Diels, J.-C., & Rudolph, W. (2006). 8 - pulse shaping. In Ultrashort laser pulse phenomena (2nd ed., pp. 433–456). Burlington: Academic Press.CrossRefGoogle Scholar
  8. 8.
    Seidel, M., Xiao, X., & Hartung, A. (2018). Solid-core fiber spectral broadening at its limits. IEEE Journal of Selected Topics in Quantum Electronics, 24, 5100908.  https://doi.org/10.1109/JSTQE.2018.2811907.CrossRefGoogle Scholar
  9. 9.
    Diels, J.-C., & Rudolph, W. (2006). 1 fundamentals. In Ultrashort laser pulse phenomena (2nd ed., Vol. 1, pp. 1–60). Burlington: Academic Press.  https://doi.org/10.1016/B978-012215493-5/50002-1.Google Scholar
  10. 10.
    Agrawal, G. (2013). Chapter 4 - self-phase modulation. In Nonlinear fiber optics. Optics and photonics (5th ed., pp. 87–128). Boston: Academic Press.  https://doi.org/10.1016/B978-0-12-397023-7.00004-8.CrossRefGoogle Scholar
  11. 11.
    Agrawal, G. (2013). Chapter 8 - Stimulated Raman scattering. In Nonlinear fiber optics. Optics and photonics (5th ed., pp. 295–352) Boston: Academic Press.  https://doi.org/10.1016/B978-0-12-397023-7.00008-5.CrossRefGoogle Scholar
  12. 12.
    Stuart, B. C., Feit, M. D., Rubenchik, A. M., Shore, B. W., & Perry, M. D. (1995). Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses. Physical Review Letters, 74, 2248–2251.  https://doi.org/10.1103/PhysRevLett.74.2248.ADSCrossRefGoogle Scholar
  13. 13.
    Lenzner, M., et al. (1998). Femtosecond optical breakdown in dielectrics. Physical Review Letters, 80, 4076–4079.  https://doi.org/10.1103/PhysRevLett.ADSCrossRefGoogle Scholar
  14. 14.
    Südmeyer, T., et al. (2003). Nonlinear femtosecond pulse compression at high average power levels by use of a large-mode-area holey fiber. Optics Letters, 28, 1951–1953.  https://doi.org/10.1364/OL.28.001951.ADSCrossRefGoogle Scholar
  15. 15.
    Heidt, A. M., et al. (2011). Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers. Optics Express, 19, 3775–3787.  https://doi.org/10.1364/OE.19.003775.ADSCrossRefGoogle Scholar
  16. 16.
    Heidt, A. M. (2010). Pulse preserving flat-top supercontinuum generation in all-normal dispersion photonic crystal fibers. Journal of the Optical Society of America B, 27, 550–559.  https://doi.org/10.1364/JOSAB.27.000550.CrossRefGoogle Scholar
  17. 17.
    Hooper, L. E., Mosley, P. J., Muir, A. C., Wadsworth, W. J., & Knight, J. C. (2011). Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion. Optics Express, 19, 4902–4907.  https://doi.org/10.1364/OE.19.004902.ADSCrossRefGoogle Scholar
  18. 18.
    Smith, A. V., & Do, B. T. (2008). Bulk and surface laser damage of silica by picosecond and nanosecond pulses at 1064 nm. Applied Optics, 47, 4812–4832.  https://doi.org/10.1364/AO.47.004812.ADSCrossRefGoogle Scholar
  19. 19.
    Svelto, O. (2010). 4 Ray and wave. Propagation through optical media. Principles of lasers (5th ed., pp. 131–161). New York: Springer.  https://doi.org/10.1007/978-1-4419-1302-9.CrossRefGoogle Scholar
  20. 20.
    Liu, Y., Tu, H., & Boppart, S. A. (2012). Wave-breaking-extended fiber supercontinuum generation for high compression ratio transform-limited pulse compression. Optics Letters, 37, 2172–2174.  https://doi.org/10.1364/OL.37.002172.ADSCrossRefGoogle Scholar
  21. 21.
    Boyd, R. W. (2008). Nonlinear optics (3rd ed.). Burlington: Academic. http://www.sciencedirect.com/science/book/9780123694706CrossRefGoogle Scholar
  22. 22.
    Svelto, O. (2010). Principles of lasers (5th ed.). New York: Springer. http://www.springerlink.com/index/10.1007/978-1-4419-1302-9.CrossRefGoogle Scholar
  23. 23.
    Boyd, R. W. (2008). 7 - processes resulting from the intensity-dependent refractive index. In Nonlinear optics (3rd ed., pp. 329–390). Burlington: Academic Press.  https://doi.org/10.1016/B978-0-12-369470-6.00007-1CrossRefGoogle Scholar
  24. 24.
    Yariv, A. (1989). Quantum electronics (3rd ed.). New York: Wiley, Inc. http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471609978.html
  25. 25.
    Tien, A.-C., Backus, S., Kapteyn, H., Murnane, M., & Mourou, G. (1999). Short-pulse laser damage in transparent materials as a function of pulse duration. Physical Review Letters, 82, 3883–3886.  https://doi.org/10.1103/PhysRevLett.82.3883.ADSCrossRefGoogle Scholar
  26. 26.
    Marburger, J. (1975). Self-focusing: theory. Progress in quantum electronics, 4, Part 1, 35–110.  https://doi.org/10.1016/0079-6727(75)90003-8.ADSCrossRefGoogle Scholar
  27. 27.
    Smith, A. V., Do, B., Hadley, G., & Farrow, R. L. (2009). Optical damage limits to pulse energy from fibers. IEEE Journal of Selected Topics in Quantum Electronics, 15, 153–158.  https://doi.org/10.1109/JSTQE.2008.2010331.ADSCrossRefGoogle Scholar
  28. 28.
    Arisholm, G. (1997). General numerical methods for simulating second-order nonlinear interactions in birefringent media. Journal of the Optical Society of America B, 14, 2543–2549.  https://doi.org/10.1364/JOSAB.14.002543.ADSCrossRefGoogle Scholar
  29. 29.
    Arisholm, G., & Fonnum, H. (2012). Simulation system for optical science (SISYFOS) - tutorial. http://www.ffi.no/no/Rapporter/12-02042.pdf.
  30. 30.
    Ganz, T., Pervak, V., Apolonski, A., & Baum, P. (2011). 16 fs, 350 nJ pulses at 5 MHz repetition rate delivered by chirped pulse compression in fibers. Optics Letters, 36, 1107–1109.  https://doi.org/10.1364/OL.36.001107.ADSCrossRefGoogle Scholar
  31. 31.
    Jocher, C., Eidam, T., Hädrich, S., Limpert, J., & Tünnermann, A. (2012). Sub 25 fs pulsesfrom solid-core nonlinear compression stage at 250W of average power. Optics Letters, 37, 4407–4409.ADSCrossRefGoogle Scholar
  32. 32.
    Boyd, R. W. (2008). Chapter 4 - the intensity-dependent refractive index. In Nonlinear optics (pp. 207–252). Burlington: Academic Press.  https://doi.org/10.1016/B978-0-12-369470-6.00004-6.CrossRefGoogle Scholar
  33. 33.
    Naumov, S., et al. (2005). Approaching the microjoule frontier with femtosecond laser oscillators. New Journal of Physics, 7, 216. https://stacks.iop.org/1367-2630/7/i=1/a=216.ADSCrossRefGoogle Scholar
  34. 34.
    Dombi, P., Rácz, P., Veisz, L. & Baum, P., (2014). Conversion of chirp in fiber compression. Optics Letters, 39, 2232–2235.  https://doi.org/10.1364/OL.39.002232.ADSCrossRefGoogle Scholar
  35. 35.
    Mero, M., et al. (2005). On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses. Optical Engineering, 4, 051107–051107–7.  https://doi.org/10.1117/1.1905343.CrossRefGoogle Scholar
  36. 36.
    Huntington, S., et al. (2003). Retaining and characterising nano-structure within tapered air-silica structured optical fibers. Optics Express, 11, 98–104.  https://doi.org/10.1364/OE.11.000098.ADSCrossRefGoogle Scholar
  37. 37.
    Ramachandran, S., et al. (2008). Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers. Laser & Photonics Reviews, 2, 429–448.  https://doi.org/10.1002/lpor.200810016.ADSCrossRefGoogle Scholar
  38. 38.
    Wright, L. G., Christodoulides, D. N., & Wise, F. W. (2015). Controllable spatiotemporal nonlinear effects in multimode fibres. Nature Photonics, 9, 306–310.  https://doi.org/10.1038/nphoton.2015.61.ADSCrossRefGoogle Scholar
  39. 39.
    Saraceno, C. J., Heckl, O. H., Baer, C. R. E., Südmeyer, T., & Keller, U. (2011). Pulse compression of a high-power thin disk laser using rod-type fiber amplifiers. Optics Express, 19, 1395–1407.  https://doi.org/10.1364/OE.19.001395.ADSCrossRefGoogle Scholar
  40. 40.
    Zhang, J., et al. (2015). 260-Megahertz, Megawatt-level thin-disk oscillator. Optics Letters, 40, 1627–1630.  https://doi.org/10.1364/OL.40.001627.ADSCrossRefGoogle Scholar
  41. 41.
    Liu, W., Chia, S.-H., Chung, H.-Y., Kaertner, F. X., & Chang, G. (2016). Energy scalable ultrafast fiber laser sources tunable in 1030–1200 nm for multiphoton microscopy. In Lasers Congress 2016 (ASSL, LSC, LAC), ATh1A.5 (Optical Society of America).  https://doi.org/10.1364/ASSL.2016.ATh1A.5.
  42. 42.
    Liu, W. (2017). Advanced ultrafast fiber laser sources enabled by fiber nonlinearities (Dissertation Universität Hamburg). http://ediss.sub.uni-hamburg.de/volltexte/2017/8335/pdf/Dissertation.pdf.
  43. 43.
    Swiderski, J. (2014). High-power mid-infrared supercontinuum sources: Current status and future perspectives. Progress in Quantum Electronics, 38, 189-235.  https://doi.org/10.1016/j.pquantelec.2014.10.002.ADSCrossRefGoogle Scholar
  44. 44.
    Nisoli, M., De Silvestri, S., & Svelto, O. (1996). Generation of high energy 10 fs pulses by a new pulse compression technique. Applied Physics Letters, 68, 2793–2795.  https://doi.org/10.1063/1.116609.ADSCrossRefGoogle Scholar
  45. 45.
    Russell, P. S. J., Hölzer, P., Chang, W., Abdolvand, A., & Travers, J. C. (2014). Hollow-core photonic crystal fibres for gas-based nonlinear optics. Nature Photonics, 8, 278–286.  https://doi.org/10.1038/nphoton.2013.312.ADSCrossRefGoogle Scholar
  46. 46.
    Wollenhaupt, M., Assion, A., & Baumert, T. (2007). Femtosecond laser pulses: Linear properties, manipulation, generation and measurement. In F. Träger (Ed.), Springer handbook of lasers and optics (pp. 937–983). New York, NY: Springer.CrossRefGoogle Scholar
  47. 47.
    Pinault, S. C., & Potasek, M. J. (1985). Frequency broadening by self-phase modulation in optical fibers. Journal of the Optical Society of America B, 2, 1318–1319.  https://doi.org/10.1364/JOSAB.2.001318.ADSCrossRefGoogle Scholar
  48. 48.
    Potasek, M. J., Agrawal, G. P., & Pinault, S. C. (1986). Analytic and numerical study of pulse broadening in nonlinear dispersive optical fibers. Journal of the Optical Society of America B, 3, 205–211.  https://doi.org/10.1364/JOSAB.3.000205.ADSCrossRefGoogle Scholar
  49. 49.
    Mak, K. F., et al. (2015). Compressing \(mu \)J-level pulses from 250 fs to sub-10 fs at 38-MHz repetition rate using two gas-filled hollow-core photonic crystal fiber stages. Optics Letters, 40, 1238–1241.  https://doi.org/10.1364/OL.40.001238.ADSCrossRefGoogle Scholar
  50. 50.
    Sheik-Bahae, M., Hagan, D. J., & Van Stryland, E. W. (1990). Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption. Physical Review Letters, 65, 96–99.  https://doi.org/10.1103/PhysRevLett.ADSCrossRefGoogle Scholar
  51. 51.
    Miller, R. C. (1964). Optical second harmonic generation in piezoelectric crystals. Applied Physics Letters, 5, 17–19.  https://doi.org/10.1063/1.1754022.ADSCrossRefGoogle Scholar
  52. 52.
    Marcatili, E. A. J., & Schmeltzer, R. A. (1964). Hollow metallic and dielectric waveguides for long distance optical transmission and lasers. Bell System Technical Journal, 43, 1783–1809.  https://doi.org/10.1002/j.1538-7305.1964.tb04108.x.CrossRefGoogle Scholar
  53. 53.
    Renn, M. J., Pastel, R., & Lewandowski, H. J. (1999). Laser guidance and trapping of mesoscale particles in hollow-core optical fibers. Physical Review Letters, 82, 1574–1577.  https://doi.org/10.1103/PhysRevLett.ADSCrossRefGoogle Scholar
  54. 54.
    Travers, J. C., Chang, W., Nold, J., Joly, N. Y., Russell & P. S. J. (2011). Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers (invited). Journal of the Optical Society of America B, 28, A11–A26.  https://doi.org/10.1364/JOSAB.28.000A11.CrossRefGoogle Scholar
  55. 55.
    Pryamikov, A. D., et al. (2011). Demonstration of a waveguide regime for a silica hollow-core microstructured optical fiber with a negative curvature of the core boundary in the spectral region \(<3.5 mu \)m. Optics Express, 9, 1441–1448.  https://doi.org/10.1364/OE.19.001441.ADSCrossRefGoogle Scholar
  56. 56.
    Cregan, R. F., et al. (1999). Single-mode photonic band gap guidance of light in air. Science, 285, 1537–1539.  https://doi.org/10.1126/science.285.5433.1537.CrossRefGoogle Scholar
  57. 57.
    Russell, P. S. (2006). Photonic-crystal fibers. Journal of Lightwave Technology, 24, 4729–4749.  https://doi.org/10.1109/JLT.2006.885258.ADSCrossRefGoogle Scholar
  58. 58.
    Benabid, F., & Roberts, P. J. (2011). Linear and nonlinear optical properties of hollow core photonic crystal fiber. Journal of Modern Optics 37–41 (2011).  https://doi.org/10.1080/09500340.2010.543706ADSCrossRefGoogle Scholar
  59. 59.
    Benabid, F., Knight, J. C., Antonopoulos, G., & Russell, P. S. J. (2002). Stimulated raman scattering in hydrogen-filled hollow-core photonic crystal fiber. Science, 298, 399–402.  https://doi.org/10.1126/science.1076408.ADSCrossRefGoogle Scholar
  60. 60.
    Février, S., Beaudou, B., & Viale, P. (2010). Understanding origin of loss in large pitch hollow-core photonic crystal fibers and their design simplification. Optics Express, 18, 5142–5150.  https://doi.org/10.1364/OE.18.005142.ADSCrossRefGoogle Scholar
  61. 61.
    Wang, Y. Y., Wheeler, N. V., Couny, F., Roberts, P. J., & Benabid, F. (2011). Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber. Optics Letters36, 669–671.  https://doi.org/10.1364/OL.36.000669ADSCrossRefGoogle Scholar
  62. 62.
    Yu, F., Wadsworth, W. J., & Knight, J. C. (2012). Low loss silica hollow core fibers for 3–4 \(\mu \)m spectral region. Optics Express, 20, 11153–11158.  https://doi.org/10.1364/OE.20.011153.ADSCrossRefGoogle Scholar
  63. 63.
    Belardi, W., & Knight, J. C. (2014). Hollow antiresonant fibers with reduced attenuation. Optics Letters, 39, 1853–1856.  https://doi.org/10.1364/OL.39.001853.ADSCrossRefGoogle Scholar
  64. 64.
    Hayes, J. R., et al. (2015). Anti-resonant hexagram hollow core fibers. Optics Express, 23, 1289–1299.  https://doi.org/10.1364/OE.23.001289.ADSCrossRefGoogle Scholar
  65. 65.
    Mak, K. F., Travers, J. C., Joly, N. Y., Abdolvand, A., & Russell, P. S. J. (2013). Two techniques for temporal pulse compression in gas-filled hollow-core Kagom’e photonic crystal fiber. Optics Letters, 38, 3592–3595.  https://doi.org/10.1364/OL.38.003592.ADSCrossRefGoogle Scholar
  66. 66.
    Mak, K. F. (2015). Nonlinear optical effects in gas-filled hollow-core photonic-crystal fibers (Dissertation. Friedrich-Alexander-Universität Erlangen-Nürnberg). https://opus4.kobv.de/opus4-fau/frontdoor/index/index/year/2015/docId/5673.
  67. 67.
    Boyd, R. W. (2008). Chapter 1 - the nonlinear optical susceptibility. Nonlinear optics (3rd ed., pp. 1–64). Burlington: Academic Press.  https://doi.org/10.1016/B978-0-12-369470-6.00001-0.Google Scholar
  68. 68.
    Börzsönyi, A., Heiner, Z., Kovács, A., Kalashnikov, M. P., & Osvay, K. (2010). Measurement of pressure dependent nonlinear refractive index of inert gases. Optics Express, 18, 25847–25854.  https://doi.org/10.1364/OE.18.025847.ADSCrossRefGoogle Scholar
  69. 69.
    Lehmeier, H., Leupacher, W., & Penzkofer, A. (1985). Nonresonant third order hyperpolarizability of rare gases and n\(_2\) determined by third harmonic generation. Optics Communications, 56, 67–72.  https://doi.org/10.1016/0030-4018(85)90069-0.ADSCrossRefGoogle Scholar
  70. 70.
    Börzsönyi, A., Heiner, Z., Kalashnikov, M. P., Kovács, A. P., & Osvay, K. (2008). Dispersion measurement of inert gases and gas mixtures at 800 nm. Applied Optics, 47, 4856–4863.  https://doi.org/10.1364/AO.47.004856.ADSCrossRefGoogle Scholar
  71. 71.
    Shelton, D. P. (1990). Nonlinear-optical susceptibilities of gases measured at 1064 and 1319 nm. Physical Review A, 42, 2578–2592.  https://doi.org/10.1103/PhysRevA.42.2578.ADSCrossRefGoogle Scholar
  72. 72.
    Couairon, A., Chakraborty, H. S., & Gaarde, M. B. (2008). From single-cycle self-compressed filaments to isolated attosecond pulses in noble gases. Physical Review A, 77, 053814.  https://doi.org/10.1103/PhysRevA.77.053814.ADSCrossRefGoogle Scholar
  73. 73.
    Azhar, M., Joly, N. Y., Travers, J. C., & Russell, P. S. J. (2013). Nonlinear optics in Xe-filled hollow-core PCF in high pressure and supercritical regimes. Applied Physics B, 112, 457–460.  https://doi.org/10.1007/s00340-013-5526-y.CrossRefGoogle Scholar
  74. 74.
    NKT Photonics. Datasheet: LMA-25. Retrieved March 06, 2017, from http://www.nktphotonics.com/wp-content/uploads/2015/01/LMA-25.pdf.
  75. 75.
    Kramida, A., Ralchenko, Yu., Reader, J., & NIST ASD Team. (2015). NIST Atomic Spectra Database (ver. 5.3). Gaithersburg, MD: National Institute of Standards and Technology. Retrieved March 7, 2017, from http://physics.nist.gov/asd.
  76. 76.
    Nurhuda, M., Suda, A., Midorikawa, K., Hatayama, M., & Nagasaka, K. (2003). Propagation dynamics of femtosecond laser pulses in a hollow fiber filled with argon: constant gas pressure versus differential gas pressure. Journal of the Optical Society of America B, 20, 2002–2011.  https://doi.org/10.1364/JOSAB.20.002002ADSCrossRefGoogle Scholar
  77. 77.
    Suda, A., Hatayama, M., Nagasaka, K., & Midorikawa, K. (2005). Generation of sub-10-fs, 5-mJ-optical pulses using a hollow fiber with a pressure gradient. Applied Physics Letters, 86, 111116.  https://doi.org/10.1063/1.1883706.ADSCrossRefGoogle Scholar
  78. 78.
    Hölzer, P., et al. (2011). 107.203901 Femtosecond nonlinear fiber optics in the ionization regime. Physical Review Letters, 107, 203901.  https://doi.org/10.1103/PhysRevLett.ADSCrossRefGoogle Scholar
  79. 79.
    Balciunas, T., et al. (2015). A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre. Nature Communications, 6, 6117.  https://doi.org/10.1038/ncomms7117.CrossRefGoogle Scholar
  80. 80.
    Saraceno, C. J., et al. (2014). Ultrafast thin-disk laser with 80 \(mu \)J pulse energy and 242 W of average power. Optics Letters, 39, 9–12.  https://doi.org/10.1364/OL.39.000009.ADSCrossRefGoogle Scholar
  81. 81.
    Brons, J., et al. (2014). Energy scaling of Kerr-lens mode-locked thin-disk oscillators. Optics Letters, 39, 6442–6445.  https://doi.org/10.1364/OL.39.006442.ADSCrossRefGoogle Scholar
  82. 82.
    Brons, J., et al. (2016). Powerful 100-fs-scale Kerr-lens mode-locked thin-disk oscillator. Optics Letters, 41, 3567–3570.  https://doi.org/10.1364/OL.41.003567.ADSCrossRefGoogle Scholar
  83. 83.
    Gebhardt, M., et al. (2015). Nonlinear compression of an ultrashort-pulse thulium-based fiber laser to sub-70 fs in Kagomé photonic crystal fiber. Optics Letters, 40, 2770–2773.  https://doi.org/10.1364/OL.40.002770.ADSCrossRefGoogle Scholar
  84. 84.
    Debord, B., et al. (2014). Multi-meter fiber-delivery and pulse self-compression of milli-joule femtosecond laser and fiber-aided laser-micromachining. Optics Express, 22, 10735–10746.  https://doi.org/10.1364/OE.22.010735.ADSCrossRefGoogle Scholar
  85. 85.
    Rothhardt, J., et al. (2011). 1 MHz repetition rate hollow fiber pulse compression to sub-100-fs duration at 100 w average power. Optics Letters, 36, 4605–4607.  https://doi.org/10.1364/OL.36.004605.ADSCrossRefGoogle Scholar
  86. 86.
    Heckl, O. H., et al. (2011). Temporal pulse compression in a xenon-filled kagome-type hollow-core photonic crystal fiber at high average power. Optics Express, 19, 19142–19149.  https://doi.org/10.1364/OE.19.019142.ADSCrossRefGoogle Scholar
  87. 87.
    Emaury, F., et al. (2013). Beam delivery and pulse compression to sub-50 fs of a modelocked thin-disk laser in a gas-filled Kagomé-type HC-PCF fiber. Optics Express, 21, 4986–4994.  https://doi.org/10.1364/OE.21.004986.ADSCrossRefGoogle Scholar
  88. 88.
    Emaury, F., et al. (2014). Efficient spectral broadening in the 100-W average power regime using gas-filled gas-filled Kagomé-type HC-PCF and pulse compression. Optics Letters, 39, 6843–6846.  https://doi.org/10.1364/OL.39.006843.ADSCrossRefGoogle Scholar
  89. 89.
    Hädrich, S., et al. (2015). Exploring new avenues in high repetition rate table-top coherent extreme ultraviolet sources. Light: Science & Applications, 4, e320.  https://doi.org/10.1038/lsa.2015.93.CrossRefGoogle Scholar
  90. 90.
    Emaury, F., Diebold, A., & Saraceno, C. J., & Keller, U. (2015). Compact extreme ultraviolet source at megahertz pulse repetition rate with a low-noise ultrafast thin-disk laser oscillator. Optica, 2, 980–984.  https://doi.org/10.1364/OPTICA.2.000980.CrossRefGoogle Scholar
  91. 91.
    Brabec, T., & Krausz, F. (2000). Intense few-cycle laser fields: Frontiers of nonlinear optics. Reviews of Modern Physics, 72, 545–591.  https://doi.org/10.1103/RevModPhys.72.545.ADSCrossRefGoogle Scholar
  92. 92.
    Rolland, C., & Corkum, P. B. (1988). Compression of high-power optical pulses. Journal of the Optical Society of America B, 5, 641–647.  https://doi.org/10.1364/JOSAB.5.000641.ADSCrossRefGoogle Scholar
  93. 93.
    Petrov, V., Rudolph, W., & Wilhelmi, B. (1989). Compression of high-energy femtosecond light pulses by self-phase modulation in bulk media. Journal of Modern Optics, 36, 587–595.  https://doi.org/10.1080/09500348914550691.ADSCrossRefGoogle Scholar
  94. 94.
    Chernev, P., & Petrov, V. (1992). Self-focusing of short light pulses in dispersive media. Optics Communications, 87, 28–32.  https://doi.org/10.1016/0030-4018(92)90036-Q.ADSCrossRefGoogle Scholar
  95. 95.
    Chernev, P., & Petrov, V. (1992). Self-focusing of light pulses in the presence of normal group-velocity dispersion. Optics Letters, 17, 172–174.  https://doi.org/10.1364/OL.17.000172.ADSCrossRefGoogle Scholar
  96. 96.
    Milosevic, N., Tempea, G., & Brabec, T. (2000). Optical pulse compression: Bulk media versus hollow waveguides. Optics Letters, 25, 672–674.  https://doi.org/10.1364/OL.25.000672.ADSCrossRefGoogle Scholar
  97. 97.
    Lu, C.-H., et al. (2014). Generation of intense supercontinuum in condensed media. Optica, 1, 400–406.  https://doi.org/10.1364/OPTICA.1.000400.CrossRefGoogle Scholar
  98. 98.
    Seidel, M., Arisholm, G., Brons, J., Pervak, V., & Pronin, O. (2016). All solid-state spectral broadening: An average and peak power scalable method for compression of ultrashort pulses. Optics Express, 24, 9412–9428.  https://doi.org/10.1364/OE.24.009412.ADSCrossRefGoogle Scholar
  99. 99.
    Centurion, M., Porter, M. A., Kevrekidis, P. G., & Psaltis, D. (2006). Nonlinearity management in optics: Experiment, theory, and simulation. Physical Review Letters, 97, 033903.  https://doi.org/10.1103/PhysRevLett.ADSCrossRefGoogle Scholar
  100. 100.
    Couairon, A., & Mysyrowicz, A. (2007). Femtosecond filamentation in transparent media. Physics Reports, 441, 47–189.  https://doi.org/10.1016/j.physrep.2006.12.005.ADSCrossRefGoogle Scholar
  101. 101.
    Alfano, R. R., & Shapiro, S. L. (1970). Emission in the region 4000 to 7000 å via four-photon coupling in glass. Physical Review Letters, 24, 584–587.  https://doi.org/10.1103/PhysRevLett.24.584.ADSCrossRefGoogle Scholar
  102. 102.
    Bradler, M., Baum, P., & Riedle, E. (2009). Femtosecond continuum generation in bulk laser host materials with sub-\(\mu \)j pump pulses. Applied Physics B, 97, 561–574.  https://doi.org/10.1007/s00340-009-3699-1.CrossRefGoogle Scholar
  103. 103.
    Newport. Spatial filters. Retrieved November 13, 2015, from http://www.newport.com/Spatial-Filters/144910/1033/content.aspx.
  104. 104.
    Arisholm, G. (1999). Quantum noise initiation and macroscopic fluctuations in optical parametric oscillators. Journal of the Optical Society of America B, 16, 117–127.  https://doi.org/10.1364/JOSAB.16.000117.ADSCrossRefGoogle Scholar
  105. 105.
    Ghosh, G. (1999). Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals. Optics Communications, 163, 95–102.  https://doi.org/10.1016/S0030-4018(99)00091-7.ADSCrossRefGoogle Scholar
  106. 106.
    Milam, D. (1998). Review and assessment of measured values of the nonlinear refractive-index coefficient of fused silica. Applied Optics, 37, 546–550.  https://doi.org/10.1364/AO.37.000546.ADSCrossRefGoogle Scholar
  107. 107.
    Brons, J., et al. (2015). Amplification-free, 145 MW, 16 MHz scalable ultrafast light-source for XUV and MIR generation. In Advanced solid state lasers, ATh3A.1 (Optical Society of America, 2015).  https://doi.org/10.1364/ASSL.2015.ATh3A.1.
  108. 108.
    Schulte, J., Sartorius, T., Weitenberg, J., Vernaleken, A., & Russbueldt, P. (2016). Nonlinear pulse compression in a multi-pass cell. Optics Letters, 41, 4511–4514.  https://doi.org/10.1364/OL.41.004511.ADSCrossRefGoogle Scholar
  109. 109.
    Weitenberg, J., et al. (2017). Multi-pass-cell-based nonlinear pulse compression to 115 fs at 7.5 \(mu \)j pulse energy and 300 W average power. Optics Express, 25, 20502–20510.  https://doi.org/10.1364/OE.25.020502.ADSCrossRefGoogle Scholar
  110. 110.
    Weitenberg, J., Saule, T., Schulte, J., & Rußbüldt, P. (2017). Nonlinear pulse compression to sub-40 fs at \(4.5,\mu \)J pulse energy by multi-pass-cell spectral broadening. IEEE Journal of Quantum Electronics, 53, 1–4.  https://doi.org/10.1109/JQE.2017.2761883.CrossRefGoogle Scholar
  111. 111.
    Brons, J., et al. (2017). Efficient, high-power, all-bulk spectral broadening in a quasi-waveguide. In 2017 European Conference on Lasers and Electro-Optics - European Quantum Electronics Conference, CF–9.4 (IEEE, 2017).  https://doi.org/10.1109/CLEOE-EQEC.2017.8086741.
  112. 112.
    Fritsch, K., Poetzlberger, M., Pervak, V., Brons, J., & Pronin, O. (2018). All-solid-state multipass spectral broadening to sub-20 fs. Optics Letters, 43, 4643–4646.  https://doi.org/10.1364/OL.43.004643.ADSCrossRefGoogle Scholar
  113. 113.
    Krebs, N., Pugliesi, I., & Riedle, E. (2013). Pulse compression of ultrashort UV pulses by self-phase modulation in bulk material. Applied Sciences, 3, 153.  https://doi.org/10.3390/app3010153.CrossRefGoogle Scholar
  114. 114.
    Møller, U., et al. (2015). Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber. Optics Express, 23, 3282–3291.  https://doi.org/10.1364/OE.23.003282.ADSCrossRefGoogle Scholar
  115. 115.
    Silva, F., et al. (2012). Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal. Nature Communications, 3, 807.  https://doi.org/10.1038/ncomms1816.CrossRefGoogle Scholar
  116. 116.
    Fattahi, H., et al. (2014). Third-generation femtosecond technology. Optica, 1, 45–63.  https://doi.org/10.1364/OPTICA.1.000045.CrossRefGoogle Scholar
  117. 117.
    Reitze, D. H., Weiner, A. M., & Leaird, D. E. (1991). High-power femtosecond optical pulse compression by using spatial solitons. Optics Letters, 16, 1409–1411.  https://doi.org/10.1364/OL.16.001409.ADSCrossRefGoogle Scholar
  118. 118.
    Jauregui, C., Limpert, J., & Tünnermann, A. (2013). High-power fibre lasers. Nature Photonics, 7, 861–867.  https://doi.org/10.1038/nphoton.2013.273.ADSCrossRefGoogle Scholar
  119. 119.
    Russbueldt, P., et al. (2015). Innoslab amplifiers. IEEE Journal of Selected Topics in Quantum Electronics, 21, 447–463.  https://doi.org/10.1109/JSTQE.2014.2333234.ADSCrossRefGoogle Scholar
  120. 120.
    Metzger, T., et al. (2014). Picosecond thin-disk lasers. In CLEO: 2014, JTh4L.1 (Optical Society of America, 2014).  https://doi.org/10.1364/CLEO_AT.2014.JTh4L.1.
  121. 121.
    Bauer, D., Zawischa, I., Sutter, D. H., Killi, A., & Dekorsy, T. (2012). Mode-locked Yb:YAG thin-disk oscillator with 41 \(\mu \)J pulse energy at 145 W average infrared power and high power frequency conversion. Optics Express, 20, 9698–9704.  https://doi.org/10.1364/OE.20.009698.ADSCrossRefGoogle Scholar
  122. 122.
    Saraceno, C. J., et al. (2012). 275 W average output power from a femtosecond thin disk oscillator operated in a vacuum environment. Optics Express, 20, 23535–23541.  https://doi.org/10.1364/OE.20.023535.ADSCrossRefGoogle Scholar
  123. 123.
    Seidel, M., et al. (2017). Efficient high-power ultrashort pulse compression in self-defocusing bulk media. Scientific Reports, 7, 1410.  https://doi.org/10.1038/s41598-017-01504-x.ADSCrossRefGoogle Scholar
  124. 124.
    Chiao, R. Y., Garmire, E., & Townes, C. H. (1964). Self-trapping of optical beams. Physical Review Letters, 13, 479–482.  https://doi.org/10.1103/PhysRevLett.13.479.ADSCrossRefGoogle Scholar
  125. 125.
    Meschede, D. (2007). Light rays. Optics, light, and lasers (2nd ed., pp. 1–27). Wiley-VCH.  https://doi.org/10.1002/9783527685486.ch1.
  126. 126.
    Steier, W. H. (1966). The ray packet equivalent of a gaussian light beam. Applied Optics, 5, 1229–1233.  https://doi.org/10.1364/AO.5.001229.ADSCrossRefGoogle Scholar
  127. 127.
    Hutchings, D. C., Sheik-Bahae, M., Hagan, D. J., & Van Stryland, E. W. (1992). Kramers-Krönig relations in nonlinear optics. Optical and Quantum Electronics, 24, 1–30.  https://doi.org/10.1007/BF01234275.CrossRefGoogle Scholar
  128. 128.
    Stegeman, G. I. (1997). \(chi ^(2)\) cascading: nonlinear phase shifts. Quantum and Semiclassical Optics. Journal of the European Optical Society Part B, 9, 139, stacks.iop.org/1355-5111/9/i=2/a=003.Google Scholar
  129. 129.
    DeSalvo, R., et al. (1992). Self-focusing and self-defocusing by cascaded second-order effects in KTP. Optics Letters, 17, 28–30.  https://doi.org/10.1364/OL.17.000028.ADSCrossRefGoogle Scholar
  130. 130.
    Zhang, D., Kong, Y., & Zhang. J.-Y. (2000). Optical parametric properties of 532-nm-pumped beta-barium-borate near the infrared absorption edge. Optics Communications, 184, 485–491.  https://doi.org/10.1016/S0030-4018(00)00968-8.ADSCrossRefGoogle Scholar
  131. 131.
    Bache, M., Guo, H., Zhou, B., & Zeng, X. (2013). The anisotropic Kerr nonlinear refractive index of the beta-barium borate (\(\beta \)-BaB\(_2\)O\(_4\)) nonlinear crystal. Optical Materials Express, 3, 357–382.  https://doi.org/10.1364/OME.3.000357.ADSCrossRefGoogle Scholar
  132. 132.
    Eckardt, R. C., Masuda, H., Fan, Y. X., & Byer, R. L. (1990). Absolute and relative nonlinear optical coefficients of KDP, KD\(^*\)P, BaB\(_2\)O\(_4\), LiIO\(_3\), MgO:LiNbO\(_3\), and KTP measured by phase-matched second-harmonic generation. IEEE Journal of Quantum Electronics, 26, 922–933.  https://doi.org/10.1109/3.55534.ADSCrossRefGoogle Scholar
  133. 133.
    Moses, J., & Wise, F. W. (2006). Controllable self-steepening of ultrashort pulses in quadratic nonlinear media. Physical Review Letters, 97, 073903.  https://doi.org/10.1103/PhysRevLett.97.073903.ADSCrossRefGoogle Scholar
  134. 134.
    Li, H., Zhou, F., Zhang, X., & Ji, W. (1997). Bound electronic kerr effect and self-focusing induced damage in second-harmonic-generation crystals. Optics Communications, 144, 75–81.  https://doi.org/10.1016/S0030-4018(97)00415-X.ADSCrossRefGoogle Scholar
  135. 135.
    Fattahi, H., Schwarz, A., Keiber, S., & Karpowicz, N. (2013). Efficient, octave-spanning difference-frequency generation using few-cycle pulses in simple collinear geometry. Optics Letters, 38, 4216–4219.  https://doi.org/10.1364/OL.38.004216.ADSCrossRefGoogle Scholar
  136. 136.
    Liu, X., Qian, L., & Wise, F. (1999). High-energy pulse compression by use of negative phase shifts produced by the cascade \(\chi ^{(2)}:\chi ^{(2)}\) nonlinearity. Optics Letters, 24, 1777–1779.  https://doi.org/10.1364/OL.24.001777.ADSCrossRefGoogle Scholar
  137. 137.
    Moses, J., & Wise, F. W. (2006). Soliton compression in quadratic media: high-energy few-cycle pulses with a frequency-doubling crystal. Optics Letters, 31, 1881–1883.  https://doi.org/10.1364/OL.31.001881.ADSCrossRefGoogle Scholar
  138. 138.
    Moses, J., Alhammali, E., Eichenholz, J. M., & Wise, F. W. (2007). Efficient high-energy femtosecond pulse compression in quadratic media with flattop beams. Optics Letters, 32, 2469–2471.  https://doi.org/10.1364/OL.32.002469.ADSCrossRefGoogle Scholar
  139. 139.
    Ashihara, S., Nishina, J., Shimura, T., & Kuroda, K. (2002). Soliton compression of femtosecond pulses in quadratic media. Journal of the Optical Society of America B, 19, 2505–2510.  https://doi.org/10.1364/JOSAB.19.002505.ADSCrossRefGoogle Scholar
  140. 140.
    Ilday, F. O., Beckwitt, K., Chen, Y.-F., Lim, H., & Wise, F. W. (2004). Controllable Raman-like nonlinearities from nonstationary, cascaded quadratic processes. Journal of the Optical Society of America B, 21, 376–383.  https://doi.org/10.1364/JOSAB.21.000376.ADSCrossRefGoogle Scholar
  141. 141.
    Ashihara, S., et al. (2004). Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate. Applied Physics Letters, 84, 1055–1057.  https://doi.org/10.1063/1.1647279.ADSCrossRefGoogle Scholar
  142. 142.
    Kato, K. (1994). Temperature-tuned 90\(^circ \) phase-matching properties of LiB\(_3\)O\(_5\). IEEE Journal of Quantum Electronics, 30, 2950–2952.  https://doi.org/10.1109/3.362711.ADSCrossRefGoogle Scholar
  143. 143.
    Armstrong, D. J., Alford, W. J., Raymond, T. D., Smith, A. V., & Bowers, M. S. (1997). Parametric amplification and oscillation with walkoff-compensating crystals. Journal of the Optical Society of America B, 14, 460–474.  https://doi.org/10.1364/JOSAB.14.000460.ADSCrossRefGoogle Scholar
  144. 144.
    Budriūnas, R., Kučinskas, D., & Varanavičius, A. (2017). High-energy continuum generation in an array of thin plates pumped by tunable femtosecond IR pulses. Applied Physics B, 123, 212.  https://doi.org/10.1007/s00340-017-6785-9.CrossRefGoogle Scholar
  145. 145.
    Zhou, B. B., Chong, A., Wise, F. W., & Bache, M. (2012). 109.043902 Ultrafast and octave-spanning optical nonlinearities from strongly phase-mismatched quadratic interactions. Physical Review Letters, 109, 043902.  https://doi.org/10.1103/PhysRevLett.ADSCrossRefGoogle Scholar
  146. 146.
    Zhou, B., & Bache, M. (2015). Dispersive waves induced by self-defocusing temporal solitons in a beta-barium-borate crystal. Optics Letters, 40, 4257–4260.  https://doi.org/10.1364/OL.40.004257.ADSCrossRefGoogle Scholar
  147. 147.
    Bache, M., & Wise, F. W. (2010). Type-i cascaded quadratic soliton compression in lithium niobate: Compressing femtosecond pulses from high-power fiber lasers. Physical Review A, 81, 053815.  https://doi.org/10.1103/PhysRevA.81.053815.ADSCrossRefGoogle Scholar
  148. 148.
    Boyd, R. W. (2008). Chapter 2 - wave-equation description of nonlinear optical interactions. In Nonlinear optics (3rd ed., pp. 69–133). Burlington: Academic Press.  https://doi.org/10.1016/B978-0-12-369470-6.00002-2.CrossRefGoogle Scholar
  149. 149.
    Sutherland, R. L. (2003). Frequency doubling and mixing. In Handbook of nonlinear optics. Optical Science and Engineering. CRC Press.  https://doi.org/10.1201/9780203912539.CrossRefGoogle Scholar
  150. 150.
    Seidel, M., et al. (2016). Carrier-envelope-phase stabilization via dual wavelength pumping. Optics Letters, 41, 1853–1856.  https://doi.org/10.1364/OL.41.001853.ADSCrossRefGoogle Scholar
  151. 151.
    Fortier, T. M., Jones, D. J., Ye, J., Cundiff, S. T., & Windeler, R. S. (2002). Long-term carrier-envelope phase coherence. Optics Letters, 27, 1436–1438.  https://doi.org/10.1364/OL.27.001436.ADSCrossRefGoogle Scholar
  152. 152.
    Baltuška, A., et al. (2003). Attosecond control of electronic processes by intense light fields. Nature, 421, 611–615.  https://doi.org/10.1038/nature01414.ADSCrossRefGoogle Scholar
  153. 153.
    Fuji, T., et al. (2005). Monolithic carrier-envelope phase-stabilization scheme. Optics Letters, 30, 332–334.  https://doi.org/10.1364/OL.30.000332.ADSCrossRefGoogle Scholar
  154. 154.
    Vernaleken, A., et al. (2012). Carrier-envelope frequency stabilization of a Ti:sapphire oscillator using different pump lasers. Optics Express, 20, 18387–18396.  https://doi.org/10.1364/OE.20.018387.ADSCrossRefGoogle Scholar
  155. 155.
    Ye, J., & Cundiff, S. T. (Eds.) (2005). Femtosecond Optical Frequency Comb: Principle, Operation, and Applications. US, Boston, MA: Springer.  https://doi.org/10.1007/b102450.Google Scholar
  156. 156.
    Washburn, B. R., et al. (2004). Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared. Optics Letters, 29, 250–252.  https://doi.org/10.1364/OL.29.000250.ADSCrossRefGoogle Scholar
  157. 157.
    Hartl, I., Imeshev, G., Fermann, M. E., Langrock, C., & Fejer, M. M. (2005). Integrated self-referenced frequency-comb laser based on a combination of fiber and waveguide technology. Optics Express, 13, 6490–6496.  https://doi.org/10.1364/OPEX.13.006490.ADSCrossRefGoogle Scholar
  158. 158.
    McFerran, J., Swann, W., Washburn, B., & Newbury, N. (2007). Suppression of pump-induced frequency noise in fiber-laser frequency combs leading to sub-radian f\(_\text{ceo}\) phase excursions. Applied Physics B, 86, 219–227.  https://doi.org/10.1007/s00340-006-2426-4.CrossRefGoogle Scholar
  159. 159.
    Meyer, S. A., Squier, J. A., & Diddams, S. A. (2008). Diode-pumped Yb:KYW femtosecond laser frequency comb with stabilized carrier-envelope offset frequency. The European Physical Journal D, 48, 19–26.  https://doi.org/10.1140/epjd/e2008-00012-8.ADSCrossRefGoogle Scholar
  160. 160.
    Klenner, A., et al. (2013). Phase-stabilization of the carrier-envelope-offset frequency of a SESAM modelocked thin disk laser. Optics Express, 21, 24770–24780.  https://doi.org/10.1364/OE.21.024770.ADSCrossRefGoogle Scholar
  161. 161.
    Balčiūnas, T., et al. (2011). Carrier envelope phase stabilization of a Yb:KGW laser amplifier. Optics Letters, 36, 3242–3244.  https://doi.org/10.1364/OL.36.003242.ADSCrossRefGoogle Scholar
  162. 162.
    Liu, Y., et al. (2015). Suppressing short-term polarization noise and related spectral decoherence in all-normal dispersion fiber supercontinuum generation. Journal of Lightwave Technology, 33, 1814–1820.  https://doi.org/10.1109/JLT.2015.2397276.ADSCrossRefGoogle Scholar
  163. 163.
    Agrawal, G. P. (2013). Chapter 5 - optical solitons. In Nonlinear fiber optics. Optics and Photonics (5th ed., pp. 129–191). Boston: Academic Press.  https://doi.org/10.1016/B978-0-12-397023-7.00005-X.CrossRefGoogle Scholar
  164. 164.
    Jones, D. J., et al. (2000). Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science, 288, 635–639.  https://doi.org/10.1126/science.288.5466.635.ADSCrossRefGoogle Scholar
  165. 165.
    Poppe, A., et al. (2001). Few-cycle optical waveform synthesis. Applied Physics B: Lasers and Optics, 2, 373–376.  https://doi.org/10.1007/s003400000526.ADSCrossRefGoogle Scholar
  166. 166.
    Paschotta, R. (2004). Noise of mode-locked lasers (part i): Numerical model. Applied Physics B, 79, 153–162.  https://doi.org/10.1007/s00340-004-1547-x.CrossRefGoogle Scholar
  167. 167.
    Karlen, L., Buchs, G., & Portuondo-Campa, E., & Lecomte, S. (2016). Efficient carrier-envelope offset frequency stabilization through gain modulation via stimulated emission. Optics Letters, 41, 376–379.  https://doi.org/10.1364/OL.41.000376.ADSCrossRefGoogle Scholar
  168. 168.
    Prevedelli, M., Freegarde, T., & Hänsch, T. (1995). Phase locking of grating-tuned diode lasers. Applied Physics B, 60, S241–S248.Google Scholar
  169. 169.
    Knox, W. H., et al. (1985). Optical pulse compression to 8 fs at a 5 kHz repetition rate. Applied Physics Letters, 46, 1120–1121.  https://doi.org/10.1063/1.95728.ADSCrossRefGoogle Scholar
  170. 170.
    Heidt, A. M., et al. (2011). High quality sub-two cycle pulses from compression of supercontinuum generated in all-normal dispersion photonic crystal fiber. Optics Express, 9, 13873–13879.  https://doi.org/10.1364/OE.19.013873.ADSCrossRefGoogle Scholar
  171. 171.
    Demmler, S., et al. (2011). Generation of high quality, 1.3 cycle pulses by active phase control of an octave spanning supercontinuum. Optics Express, 9, 20151–20158.  https://doi.org/10.1364/OE.19.020151.CrossRefGoogle Scholar
  172. 172.
    Brons, J. (2017). High-power femtosecond laser-oscillators for applications in high-field physics (Dissertation, Ludwig-Maximilians-Universität. München)Google Scholar
  173. 173.
    Emaury, F., et al. (2015). Frequency comb offset dynamics of sesam modelocked thin disk lasers. Optics Express, 3, 21836–21856.  https://doi.org/10.1364/OE.23.021836.ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institut de Science et d’Ingénierie SupramoléculairesStrasbourgFrance

Personalised recommendations