Advertisement

Proof of Concept: Few-Cycle Pulse Generation and Carrier-Envelope-Phase Stabilization

  • Marcus SeidelEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

The first chapter has pointed out important breakthroughs of solid-state laser architectures. In particular Ti:sapph lasers have revolutionized frequency metrology and ultrafast optics. The introduction has also emphasized the potential of the thin-disk technology to become the foundation of the upcoming power-scalable laser oscillator generation.

References

  1. 1.
    Pronin, O., et al. (2015). High-power multi-megahertz source of waveform-stabilized few-cycle light. Nature Communications, 6, 6988.  https://doi.org/10.1038/ncomms7988.
  2. 2.
    Pronin, O., et al. (2012). Towards a compact thin-disk-based femtosecond XUV source. Dissertation, Ludwig-Maximilians-Universität, München.Google Scholar
  3. 3.
    Pronin, O., et al. (2011). High-power 200 fs Kerr-lens mode-locked Yb:YAG thin-disk oscillator. Optics Letters, 36, 4746–4748.  https://doi.org/10.1364/OL.36.004746.ADSGoogle Scholar
  4. 4.
    Angelov, I., (2014). Development of high-damage threshold dispersive coatings. Dissertation, Ludwig-Maximilians-Universität, München. https://edoc.ub.uni-muenchen.de/17229/
  5. 5.
    Diels, J.-C., & Rudolph, W. (2006). 1- fundamentals. Ultrashort laser pulse phenomena (2nd ed., pp. 1–60). Burlington: Academic.Google Scholar
  6. 6.
    Knox, W. H., et al. (1985). Optical pulse compression to 8 fs at a 5 kHz repetition rate. Applied Physics Letters, 46, 1120–1121.  https://doi.org/10.1063/1.95728.ADSGoogle Scholar
  7. 7.
    Südmeyer, T., et al. (2003). Nonlinear femtosecond pulse compression at high average power levels by use of a large-mode-area holey fiber. Optics Letters, 28, 1951–1953.  https://doi.org/10.1364/OL.28.001951.ADSGoogle Scholar
  8. 8.
    Innerhofer, E., et al. (2005). 32 W of average power in 24-fs pulses from a passively mode-locked thin disk laser with nonlinear fiber compression. Advanced solid-state photonics, TuA3. Washington: Optical Society of America.  https://doi.org/10.1364/ASSP.2005.TuA3.
  9. 9.
    Birks, T. A., Knight, J. C., & Russell, P. S. (1997). Endlessly single-mode photonic crystal fiber. Optics Letters, 22, 961–963.  https://doi.org/10.1364/OL.22.000961.ADSGoogle Scholar
  10. 10.
    Knight, J. C., Birks, T. A., Cregan, R. F., Russell, P. S., & de Sandro, J.-P. (1998). Large mode area photonic crystal fibre. Electronics Letters, 34, 1347.  https://doi.org/10.1049/el:19980965.Google Scholar
  11. 11.
    Russell, P. (2003). Photonic crystal fibers. Science, 299, 358–362.  https://doi.org/10.1126/science.1079280.ADSGoogle Scholar
  12. 12.
    Russell, P. S. (2006). Photonic-crystal fibers. Journal of Lightwave Technology, 24, 4729–4749.  https://doi.org/10.1109/JLT.2006.885258.ADSGoogle Scholar
  13. 13.
    Dudley, J. M., Genty, G., & Coen, S. (2006). Supercontinuum generation in photonic crystal fiber. Reviews of Modern Physics, 78, 1135–1184.  https://doi.org/10.1103/RevModPhys.78.1135.ADSGoogle Scholar
  14. 14.
    Alfano, R. R. (Ed.). (2016). The supercontinuum laser source (3rd ed.). New York: Springer.  https://doi.org/10.1007/978-1-4939-3326-6.Google Scholar
  15. 15.
    Seidel, M., Xiao, X., & Hartung, A. (2018). Solid-core fiber spectral broadening at its limits. IEEE Journal of Selected Topics in Quantum Electronics, 24, 5100908.  https://doi.org/10.1109/JSTQE.2018.2811907.Google Scholar
  16. 16.
    Tomlinson, W. J., Stolen, R. H., & Johnson, A. M. (1985). Optical wave breaking of pulses in nonlinear optical fibers. Optics Letters, 10, 457–459.  https://doi.org/10.1364/OL.10.000457.ADSGoogle Scholar
  17. 17.
    Marchese, S. V. (2008). In Baltes, H., et al. (Eds.), Towards high field physics with high power thin disk laser oscillators (1st ed.)., Series in quantum electronics Konstanz: Hartung-Gorre.  https://doi.org/10.1016/B978-0-12-397023-7.
  18. 18.
    NKT photonics. (2017). Application note: Damage threshold of fiber facets. Retrieved March 13, 2017 from http://www.nktphotonics.com/wp-content/uploads/2015/02/Application_Note_-_Damage_threshold_of_fiber_facets.pdf.
  19. 19.
    Pupeza, I., et al. (2015). High-power sub-two-cycle mid-infrared pulses at 100 MHZ repetition rate. Nature Photonics, 9, 721–724. Letter.  https://doi.org/10.1038/nphoton.2015.179.ADSGoogle Scholar
  20. 20.
    Pervak, V., Ahmad, I., Trubetskov, M. K., Tikhonravov, A. V., & Krausz, F. (2009). Double-angle multilayer mirrors with smooth dispersion characteristics. Optics Express, 17, 7943–7951.  https://doi.org/10.1364/OE.17.007943.ADSGoogle Scholar
  21. 21.
    Spielmann, C., Xu, L., & Krausz, F. (1997). Measurement of interferometric autocorrelations: Comment. Applied Optics, 36, 2523–2525.  https://doi.org/10.1364/AO.36.002523.ADSGoogle Scholar
  22. 22.
    Rothhardt, J., et al. (2014). 53 W average power few-cycle fiber laser system generating soft X-rays up to the water window. Optics Letters, 39, 5224–5227.  https://doi.org/10.1364/OL.39.005224.ADSGoogle Scholar
  23. 23.
    Hädrich, S., et al. (2016). Energetic sub-2-cycle laser with 216 W average power. Optics Letters, 41, 4332–4335.  https://doi.org/10.1364/OL.41.004332.ADSGoogle Scholar
  24. 24.
    Brons, J., et al. (2016). Powerful 100-fs-scale Kerr-lens mode-locked thin-disk oscillator. Optics Letters, 41, 3567–3570.  https://doi.org/10.1364/OL.41.003567.ADSGoogle Scholar
  25. 25.
    Zhang, J., et al. (2015). 49-fs Yb:YAG thin-disk oscillator with distributed Kerr-lens mode-locking. In 2015 European Conference on Lasers and Electro-Optics - European Quantum Electronics Conference, PDA.1. Washington: Optical Society of America. http://www.osapublishing.org/abstract.cfm?URI=EQEC-2015-PD_A_1
  26. 26.
    Saraceno, C., et al. (2012). 275 W average output power from a femtosecond thin disk oscillator operated in a vacuum environment. Optics Express, 20, 23535–23541.  https://doi.org/10.1364/OE.20.023535.ADSGoogle Scholar
  27. 27.
    Saraceno, C. J., et al. (2014). Ultrafast thin-disk laser with 80 \(\mu \) J pulse energy and 242 W of average power. Optics Letters, 39, 9–12.  https://doi.org/10.1364/OL.39.000009.ADSGoogle Scholar
  28. 28.
    Saraceno, C., et al. (2012). Sub-100 femtosecond pulses from a SESAM modelocked thin disk laser. Applied Physics B, 106, 559–562.  https://doi.org/10.1007/s00340-012-4900-5.Google Scholar
  29. 29.
    Diebold, A., et al. (2013). SESAM mode-locked Yb:Ca Gd AlO\(_4\) thin disk laser with 62 fs pulse generation. Optics Letters, 38, 3842–3845.  https://doi.org/10.1364/OL.38.003842.ADSGoogle Scholar
  30. 30.
    Papp, S., et al. (2015). Self-referencing a CW laser with efficient nonlinear optics. Nonlinear Optics, NTh3A.6. Washington: Optical Society of America.  https://doi.org/10.1364/NLO.2015.NTh3A.6.
  31. 31.
    Hanna, M., et al. (2013). Coherent beam combining in the femtosecond regime. Coherent laser beam combining (pp. 277–301). New Jercy: Wiley-VCH Verlag GmbH & Co., GaA.  https://doi.org/10.1002/9783527652778.ch09.Google Scholar
  32. 32.
    Klenke, A., et al. (2014). Coherent combination of spectrally broadened femtosecond pulses for nonlinear compression. Optics Letters, 39, 3520–3522.  https://doi.org/10.1364/OL.39.003520.ADSGoogle Scholar
  33. 33.
    Ganz, T., Pervak, V., Apolonski, A., & Baum, P. (2011). 16 fs, MHz repetition rate delivered by chirped pulse compression in fibers. Optics Letters, 36, 1107–1109.  https://doi.org/10.1364/OL.36.001107.ADSGoogle Scholar
  34. 34.
    Alfano, R. R., & Shapiro, S. L. (1970). Emission in the region 4000 to 7000 Å via four-photon coupling in glass. Physical Review Letters, 24, 584–587.  https://doi.org/10.1103/PhysRevLett.24.584.ADSGoogle Scholar
  35. 35.
    Couairon, A., & Mysyrowicz, A. (2007). Femtosecond filamentation in transparent media. Physics Reports, 441, 47–189.  https://doi.org/10.1016/j.physrep.2006.12.005.ADSGoogle Scholar
  36. 36.
    Seidel, M., et al. (2014). High-power few-cycle pulse generation by spectral broadening in bulk material. In CLEO: 2014 Postdeadline Paper Digest, STh5C.9. Optical Society of America. http://dx.doi.org/10.1364/CLEO_SI.2014.STh5C.9
  37. 37.
    Milosevic, N., Tempea, G., & Brabec, T. (2000). Optical pulse compression: Bulk media versus hollow waveguides. Optics Letters, 25, 672–674.  https://doi.org/10.1364/OL.25.000672.ADSGoogle Scholar
  38. 38.
    Szipöcs, R., Spielmann, C., Krausz, F., & Ferencz, K. (1994). Chirped multilayer coatings for broadband dispersion control in femtosecond lasers. Optics Letters, 19, 201–203.  https://doi.org/10.1364/OL.19.000201.ADSGoogle Scholar
  39. 39.
    Brabec, T., & Krausz, F. (2000). Intense few-cycle laser fields: Frontiers of nonlinear optics. Reviews of Modern Physics, 72, 545–591.  https://doi.org/10.1103/RevModPhys.72.545.ADSGoogle Scholar
  40. 40.
    Loy, M., & Shen, Y. (1973). Study of self-focusing and small-scale filaments of light in nonlinear media. IEEE Journal of Quantum Electronics, 9, 409–422.  https://doi.org/10.1109/JQE.1973.1077489.ADSGoogle Scholar
  41. 41.
    Boyd, R. W., Lukishova, S. G., Shen, Y., & (Eds.)., (2009). Self-focusing: Past and present: Fundamentals and prospects. New York: Springer.  https://doi.org/10.1007/978-0-387-34727-1.Google Scholar
  42. 42.
    Saraceno, C. J., et al. (2012). Self-referenceable frequency comb from an ultrafast thin disk laser. Optics Express, 20, 9650–9656.  https://doi.org/10.1364/OE.20.009650.ADSGoogle Scholar
  43. 43.
    Paschotta, R. (2004). Noise of mode-locked lasers (part i): Numerical model. Applied Physics B, 79, 153–162.  https://doi.org/10.1007/s00340-004-1547-x.Google Scholar
  44. 44.
    Paschotta, R. (2004). Noise of mode-locked lasers (part ii): Timing jitter and other fluctuations. Applied Physics B, 79, 163–173.  https://doi.org/10.1007/s00340-004-1548-9.Google Scholar
  45. 45.
    Wittmann, T., et al. (2009). Single-shot carrier-envelope phase measurement of few-cycle laser pulses. Nature Physics, 5, 357–362.  https://doi.org/10.1038/nphys1250.ADSGoogle Scholar
  46. 46.
    Paasch-Colberg, T., et al. (2014). Solid-state light-phase detector. Nature Photonics, 8, 214–218.  https://doi.org/10.1038/nphoton.2013.348.ADSGoogle Scholar
  47. 47.
    Koechner, W. (2006). Properties of solid-state laser materials. Solid-state laser engineering (6th ed., pp. 38–101). New York: Springer.  https://doi.org/10.1007/0-387-29338-8_3.
  48. 48.
    Vernaleken, A., et al. (2012). Carrier-envelope frequency stabilization of a Ti: Sapphire oscillator using different pump lasers. Optics Express, 20, 18387–18396.  https://doi.org/10.1364/OE.20.018387.ADSGoogle Scholar
  49. 49.
    Fuji, T., Apolonski, A., & Krausz, F. (2004). Self-stabilization of carrier-envelope offset phase by use of difference-frequency generation. Optics Letters, 29, 632–634.  https://doi.org/10.1364/OL.29.000632.ADSGoogle Scholar
  50. 50.
    Fuji, T., et al. (2005). Monolithic carrier-envelope phase-stabilization scheme. Optics Letters, 30, 332–334.  https://doi.org/10.1364/OL.30.000332.ADSGoogle Scholar
  51. 51.
    Morgner, U., et al. (2001). Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime. Physical Review Letters, 86, 5462–5465.  https://doi.org/10.1103/PhysRevLett.86.5462.ADSGoogle Scholar
  52. 52.
    Hitachi, K., Ishizawa, A., Nishikawa, T., Asobe, M., & Sogawa, T. (2014). Carrier-envelope offset locking with a 2f-to-3f self-referencing interferometer using a dual-pitch PPLN ridge waveguide. Optics Express, 22, 1629–1635.  https://doi.org/10.1364/OE.22.001629.ADSGoogle Scholar
  53. 53.
    Jones, D. J., et al. (2000). Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science, 288, 635–639.  https://doi.org/10.1126/science.288.5466.635.ADSGoogle Scholar
  54. 54.
    Ye, J., Cundiff, S. T., & (Eds.)., (2005). Femtosecond optical frequency comb: Principle, operation, and applications. Boston: Springer.  https://doi.org/10.1007/b102450.Google Scholar
  55. 55.
    Grebing, C., Koke, S., Manschwetus, B., & Steinmeyer, G. (2009). Performance comparison of interferometer topologies for carrier-envelope phase detection. Applied Physics B, 95, 81–84.  https://doi.org/10.1007/s00340-009-3428-9.Google Scholar
  56. 56.
    Tsatourian, V., Margolis, H. S., Marra, G., Reid, D. T., & Gill, P. (2010). Common-path self-referencing interferometer for carrier-envelope offset frequency stabilization with enhanced noise immunity. Optics Letters, 35, 1209–1211.  https://doi.org/10.1364/OL.35.001209.ADSGoogle Scholar
  57. 57.
    Prevedelli, M., Freegarde, T., & Hänsch, T. (1995). Phase locking of grating-tuned diode lasers. Applied Physics B, 60, S241–S248.Google Scholar
  58. 58.
    Poppe, A., et al. (2001). Few-cycle optical waveform synthesis. Applied Physics B: Lasers and Optics, 72, 373–376.  https://doi.org/10.1007/s003400000526.Google Scholar
  59. 59.
    Baltuška, A., et al. (2003). Attosecond control of electronic processes by intense light fields. Nature, 421, 611–615.  https://doi.org/10.1038/nature01414.ADSGoogle Scholar
  60. 60.
    Witte, S., Zinkstok, R., Hogervorst, W., & Eikema, K. (2004). Control and precise measurement of carrier-envelope phase dynamics. Applied Physics B, 78, 5–12.  https://doi.org/10.1007/s00340-003-1307-3.ADSGoogle Scholar
  61. 61.
    Meyer, S. A., Squier, J. A., & Diddams, S. A. (2008). Diode-pumped Yb:KYW femtosecond laser frequency comb with stabilized carrier-envelope offset frequency. The European Physical Journal D, 48, 19–26.  https://doi.org/10.1140/epjd/e2008-00012-8.ADSGoogle Scholar
  62. 62.
    Washburn, B. R., et al. (2004). Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared. Optics Letters, 29, 250–252.  https://doi.org/10.1364/OL.29.000250.ADSGoogle Scholar
  63. 63.
    Xu, L., et al. (1996). Route to phase control of ultrashort light pulses. Optics Letters, 21, 2008–2010.  https://doi.org/10.1364/OL.21.002008.ADSGoogle Scholar
  64. 64.
    Lee, C.-C., et al. (2012). Frequency comb stabilization with bandwidth beyond the limit of gain lifetime by an intracavity graphene electro-optic modulator. Optics Letters, 37, 3084–3086.  https://doi.org/10.1364/OL.37.003084.ADSGoogle Scholar
  65. 65.
    McFerran, J., Swann, W., Washburn, B., & Newbury, N. (2007). Suppression of pump-induced frequency noise in fiber-laser frequency combs leading to sub-radian f\(_\text{ceo}\) phase excursions. Applied Physics B, 86, 219–227.  https://doi.org/10.1007/s00340-006-2426-4.Google Scholar
  66. 66.
    Bechhoefer, J. (2005). Feedback for physicists: A tutorial essay on control. Reviews of Modern Physics, 77, 783–836.  https://doi.org/10.1103/RevModPhys.77.783.ADSGoogle Scholar
  67. 67.
    Fortier, T. M., Ye, J., Cundiff, S. T., & Windeler, R. S. (2002). Nonlinear phase noise generated in air-silica microstructure fiber and its effect on carrier-envelope phase. Optics Letters, 27, 445–447.  https://doi.org/10.1364/OL.27.000445.ADSGoogle Scholar
  68. 68.
    Gohle, C., et al. (2005). A frequency comb in the extreme ultraviolet. Nature, 436, 234–237.  https://doi.org/10.1038/nature03851.ADSGoogle Scholar
  69. 69.
    Cingoz, A., et al. (2012). Direct frequency comb spectroscopy in the extreme ultraviolet. Nature, 482, 68–71.  https://doi.org/10.1038/nature10711.ADSGoogle Scholar
  70. 70.
    Pronin, O., et al. (2013). Towards CEP stabilized pulses from a KLM Yb:YAG thindisk oscillator. In 2013 Conference on Lasers and Electro-Optics - International Quantum Electronics Conference, CFIE\(\_2\_2\). Optical Society of America. http://www.osapublishing.org/abstract.cfm?URI=CLEO_Europe-2013-CFIE_2_2
  71. 71.
    Klenner, A., et al. (2013). Phase-stabilization of the carrier-envelope-offset frequency of a SESAM modelocked thin disk laser. Optics Express, 21, 24770–24780.  https://doi.org/10.1364/OE.21.024770.ADSGoogle Scholar
  72. 72.
    Emaury, F., et al. (2015). Frequency comb offset dynamics of sesam modelocked thin disk lasers. Optics Express, 23, 21836–21856.  https://doi.org/10.1364/OE.23.021836.ADSGoogle Scholar
  73. 73.
    Koke, S., et al. (2010). Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise. Nature Photonics, 4, 462–465.  https://doi.org/10.1038/nphoton.2010.91.ADSGoogle Scholar
  74. 74.
    Lücking, F., Assion, A., Apolonski, A., Krausz, F., & Steinmeyer, G. (2012). Long-term carrier-envelope-phase-stable few-cycle pulses by use of the feed-forward method. Optics Letters, 37, 2076–2078.  https://doi.org/10.1364/OL.37.002076.ADSGoogle Scholar
  75. 75.
    Young, J. E. H., & Yao, S.-K. (1981). Design considerations for acousto-optic devices. Proceedings of the IEEE, 69, 54–64.  https://doi.org/10.1109/PROC.1981.11920.ADSGoogle Scholar
  76. 76.
    Milam, D. (1998). Review and assessment of measured values of the nonlinear refractive-index coefficient of fused silica. Applied Optics, 37, 546–550.  https://doi.org/10.1364/AO.37.000546.ADSGoogle Scholar
  77. 77.
    Isomet Corp. (2017). Application note: Acousto-Optic Modulation (AN0510). Retrieved April 06, 2017 from http://www.isomet.com/App-Manual_pdf/AO%20Modulation.pdf.
  78. 78.
    Giunta, M., et al. (2016). Ultra low noise Er: Fiber frequency comb comparison. In Conference on Lasers and Electro-Optics, STh4H.1. Optical Society of America. http://dx.doi.org/10.1364/CLEO_SI.2016.STh4H.1
  79. 79.
    Kim, J., & Song, Y. (2016). Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications. Advances in Optics and Photonics, 8, 465–540.  https://doi.org/10.1364/AOP.8.000465.ADSGoogle Scholar
  80. 80.
    Spectra-Physics. (2017). Rainbow 2. Retrieved April 10, 2017 from http://www.spectra-physics.com/products/ultrafast-lasers/rainbow2#3.
  81. 81.
    Laser Quantum. (2017). Venteon ultra. Retrieved April 10, 2017 from http://www.laserquantum.com/products/detail.cfm?id=74.
  82. 82.
    Naumov, S., et al. (2005). Approaching the microjoule frontier with femtosecond laser oscillators. New Journal of Physics, 7, 216. http://stacks.iop.org/1367-2630/7/i=1/a=216.ADSGoogle Scholar
  83. 83.
    Dewald, S., et al. (2006). Ionization of noble gases with pulses directly from a laser oscillator. Optics Letters, 31, 2072–2074.  https://doi.org/10.1364/OL.31.002072.ADSGoogle Scholar
  84. 84.
    Spectra-Physics. (2017). Femtosource XL. Retrieved April 10, 2017 from http://www.spectra-physics.com/products/ultrafast-lasers/femtosource-xl.
  85. 85.
    Hohenleutner, M., et al. (2015). Real-time observation of interfering crystal electrons in high-harmonic generation. Nature, 523, 572–575.  https://doi.org/10.1038/nature14652.ADSGoogle Scholar
  86. 86.
    Paasch-Colberg, T., et al. (2016). Sub-cycle optical control of current in a semiconductor: From the multiphoton to the tunneling regime. Optica, 3, 1358–1361.  https://doi.org/10.1364/OPTICA.3.001358.Google Scholar
  87. 87.
    Ghimire, S., et al. (2011). Observation of high-order harmonic generation in a bulk crystal. Nature Physics, 7, 138–141.  https://doi.org/10.1038/nphys1847.ADSGoogle Scholar
  88. 88.
    Luu, T. T., et al. (2015). Extreme ultraviolet high-harmonic spectroscopy of solids. Nature, 521, 498–502.  https://doi.org/10.1038/nature14456.ADSGoogle Scholar
  89. 89.
    Vampa, G., et al. (2015). Linking high harmonics from gases and solids. Nature, 522, 462–464.  https://doi.org/10.1038/nature14517.ADSGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institut de Science et d’Ingénierie SupramoléculairesStrasbourgFrance

Personalised recommendations