Advertisement

Introduction

  • Marcus SeidelEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

In this chapter, firstly specifies the research area and defines the research objectives of this thesis. Secondly, it introduces the main methods from a historical point of view, outlines the shortcomings of currently prevailing laser technologies, and explains possible applications for a new generation of mode-locked femtosecond oscillators. Thirdly, some important properties of the thin-disk technology are introduced. In Sect. 1.4, fundamental physical concepts are explained in an illustrative manner.

References

  1. 1.
    Maiman, T. H. (1960). Optical radiation in ruby. Nature, 187, 493–494.  https://doi.org/10.1038/187493a0.ADSCrossRefGoogle Scholar
  2. 2.
    Einstein, A. (1916). Strahlungs-Emission und Absorption nach der Quantentheorie. Verhandlungen der Deutschen Physikalischen Gesellschaft, 18, 318–323.ADSGoogle Scholar
  3. 3.
    Lukishova, S. G., & Valentin, A. (2010). Fabrikant: Negative absorption, his 1951 patent application for amplification of electromagnetic radiation (ultraviolet, visible, infrared and radio spectral regions) and his experiments. Journal of the European Optical Society - Rapid Publications, 5, 10045s.  https://doi.org/10.2971/jeos.2010.10045s.
  4. 4.
    Basov, N. G., & Prochorov, A. (1954). Vorschläge und Rechnungen zu einem Mikrowellen-Oszillator basierend auf stimulierter Emission. Zh. Eksperim. i Teor. Fiz., 27, 431.Google Scholar
  5. 5.
    Schawlow, A. L., & Townes, C. H. (1958). Infrared and optical masers. Physical Review, 112, 1940–1949.  https://doi.org/10.1103/PhysRev.112.1940.ADSCrossRefGoogle Scholar
  6. 6.
    Overton, G., Nogee, A., Belforte, D., & Holton, C. (2017). Annual laser market review & forecast: Where have all the lasers gone? Laser Focus World, 53, 32–52. https://digital.laserfocusworld.com/laserfocusworld/201701/?pg=35&pm=2&u1=friend.
  7. 7.
    laserfest.org. (2017). Laser Pioneers. Retrieved April 26, 2017 from http://laserfest.org/lasers/pioneers/nobel.cfm.
  8. 8.
    Coherent. (2015). Laser materials processing introduction to lasers for materials processing. Retrieved November 25, 2015 from https://www.coherent.com/applications/index.cfm?fuseaction=Forms.page&PageID=98.
  9. 9.
    Spence, D. E., Kean, P. N., & Sibbett, W. (1990). Sub-100fs pulse generation from a self-modelocked titanium:sapphire laser. In Conference on Lasers and Electro-optics, CLEO, Techical Digest Series (pp. 619–620). Optical Society of America.Google Scholar
  10. 10.
    Spence, D. E., Kean, P. N., & Sibbett, W. (1991). 60-fsec pulse generation from a self-mode-locked Ti:sapphire laser. Optics Letters, 16, 42–44.  https://doi.org/10.1364/OL.16.000042.ADSCrossRefGoogle Scholar
  11. 11.
    Fattahi, H., et al. (2014). Third-generation femtosecond technology. Optica, 1, 45–63.  https://doi.org/10.1364/OPTICA.1.000045.CrossRefGoogle Scholar
  12. 12.
    Fattahi, H. (2015). Third-generation femtosecond technology. Dissertation, Ludwig-Maximilians-Universität, München.Google Scholar
  13. 13.
    Südmeyer, T., et al. (2008). Femtosecond laser oscillators for high-field science. Nature Photonics, 2, 599–604.  https://doi.org/10.1038/nphoton.2008.194.CrossRefGoogle Scholar
  14. 14.
    Hargrove, L. E., Fork, R. L., & Pollack, M. A. (1964). Locking of He-Ne laser modes induced by synchronous intracavity modulation. Applied Physics Letters, 5, 4–5.  https://doi.org/10.1063/1.1754025.ADSCrossRefGoogle Scholar
  15. 15.
    Mocker, H. W., & Collins, R. J. (1965). Mode competition and self-locking effects in a Q-switched ruby laser. Applied Physics Letters, 7, 270–273.  https://doi.org/10.1063/1.1754253.ADSCrossRefGoogle Scholar
  16. 16.
    DeMaria, A. J., Stetser, D. A., & Heynau, H. (1966). Self mode-locking of lasers with saturable absorbers. Applied Physics Letters, 8, 174–176.  https://doi.org/10.1063/1.1754541.ADSCrossRefGoogle Scholar
  17. 17.
    Ippen, E., Shank, C., & Dienes, A. (1972). Passive mode locking of the CW dye laser. Applied Physics Letters, 21, 348–350.  https://doi.org/10.1063/1.1654406.ADSCrossRefGoogle Scholar
  18. 18.
    Knox, W. H., et al. (1985). Optical pulse compression to 8 fs at a 5 kHz repetition rate. Applied Physics Letters, 46, 1120–1121.  https://doi.org/10.1063/1.95728.ADSCrossRefGoogle Scholar
  19. 19.
    Jones, D. J., et al. (2000). Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science, 288, 635–639.  https://doi.org/10.1126/science.288.5466.635.ADSCrossRefGoogle Scholar
  20. 20.
    Ell, R., et al. (2001). Generation of 5-fs pulses and octave-spanning spectra directly from a Ti:sapphire laser. Optics Letters, 26, 373–375.  https://doi.org/10.1364/OL.26.000373.ADSCrossRefGoogle Scholar
  21. 21.
    Aus der Au, J., et al. (2000). 16.2-W average power from a diode-pumped femtosecond Yb:YAG thin disk laser. Optics Letters, 25, 859–861.  https://doi.org/10.1364/OL.25.000859.ADSCrossRefGoogle Scholar
  22. 22.
    Baer, C. R. E., et al. (2010). Femtosecond thin-disk laser with 141 W of average power. Optics Letters, 35, 2302–2304.  https://doi.org/10.1364/OL.35.002302.ADSCrossRefGoogle Scholar
  23. 23.
    Pronin, O., et al. (2011). High-power 200 fs Kerr-lens mode-locked Yb:YAG thin-disk oscillator. Optics Letters, 36, 4746–4748.  https://doi.org/10.1364/OL.36.004746.ADSCrossRefGoogle Scholar
  24. 24.
    Pronin, O., et al. (2015). High-power multi-megahertz source of waveform-stabilized few-cycle light. Nature Communications, 6, 6988.  https://doi.org/10.1038/ncomms7988.
  25. 25.
    Fermann, M. E., & Hartl, I. (2009). Ultrafast fiber laser technology. IEEE Journal of Selected Topics in Quantum Electronics, 15, 191–206.  https://doi.org/10.1109/JSTQE.2008.2010246.ADSCrossRefGoogle Scholar
  26. 26.
    Fermann, M. E., & Hartl, I. (2013). Ultrafast fibre lasers. Nature Photonics, 7, 868–874.  https://doi.org/10.1038/nphoton.2013.280.ADSCrossRefGoogle Scholar
  27. 27.
    Jauregui, C., Limpert, J., & Tünnermann, A. (2013). High-power fibre lasers. Nature Photonics, 7, 861–867.  https://doi.org/10.1038/nphoton.2013.273.ADSCrossRefGoogle Scholar
  28. 28.
    Müller, M., et al. (2016). 1 kW 1 mJ eight-channel ultrafast fiber laser. Optics Letters, 41, 3439–3442.  https://doi.org/10.1364/OL.41.003439.ADSCrossRefGoogle Scholar
  29. 29.
    Krauss, G., et al. (2010). Synthesis of a single cycle of light with compact erbium-doped fibre technology. Nature Photonics, 4, 33–36.  https://doi.org/10.1038/nphoton.2009.258.ADSCrossRefGoogle Scholar
  30. 30.
    Giunta, M., et al. (2016). Ultra low noise Er:Fiber frequency comb comparison. In Conference on Lasers and Electro-Optics, STh4H.1. Optical Society of America.  https://doi.org/10.1364/CLEO_SI.2016.STh4H.1.
  31. 31.
    Mourou, G., Brocklesby, B., Tajima, T., & Limpert, J. (2013). The future is fibre accelerators. Nature Photonics, 7, 258–261.  https://doi.org/10.1038/nphoton.2013.75.ADSCrossRefGoogle Scholar
  32. 32.
    Russbueldt, P., et al. (2015). Innoslab amplifiers. IEEE Journal of Selected Topics in Quantum Electronics, 21, 447–463.  https://doi.org/10.1109/JSTQE.2014.2333234.ADSCrossRefGoogle Scholar
  33. 33.
    Negel, J.-P., et al. (2015). Ultrafast thin-disk multipass laser amplifier delivering 1.4 kW (4.7 mJ, 1030 nm) average power converted to 820 W at 515 nm and 234 W at 343 nm. Optics Express, 23, 21064–21077.  https://doi.org/10.1364/OE.23.021064.ADSCrossRefGoogle Scholar
  34. 34.
    Nubbemeyer, T., et al. (2017). 1 kW, 200 mJ picosecond thin-disk laser system. Optics Letters, 42, 1381–1384.  https://doi.org/10.1364/OL.42.001381.ADSCrossRefGoogle Scholar
  35. 35.
    Baumgartl, M., Lecaplain, C., Hideur, A., Limpert, J., & Tünnermann, A. (2012). 66 W average power from a microjoule-class sub-100 fs fiber oscillator. Optics Letters, 37, 1640–1642.  https://doi.org/10.1364/OL.37.001640.ADSCrossRefGoogle Scholar
  36. 36.
    Krausz, F., et al. (1992). Femtosecond solid-state lasers. IEEE Journal of Quantum Electronics, 28, 2097–2122.  https://doi.org/10.1109/3.159520.ADSCrossRefGoogle Scholar
  37. 37.
    French, P. M. W. (1995). The generation of ultrashort laser pulses. Reports on Progress in Physics, 58, 169. https://stacks.iop.org/0034-4885/58/i=2/a=001.ADSCrossRefGoogle Scholar
  38. 38.
    Zewail, A. H. (2000). Femtochemistry: Atomic-scale dynamics of the chemical bond. The Journal of Physical Chemistry A, 104, 5660–5694.  https://doi.org/10.1021/jp001460h.ADSCrossRefGoogle Scholar
  39. 39.
    Zewail, A. Femtochemistry: Atomic-Scale Dynamics of the Chemical Bond Using Ultrafast Lasers. Retrieved November 25, 2015 from http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1999/zewail-lecture.html.
  40. 40.
    Hentschel, M., et al. (2001). Attosecond metrology. Nature, 414, 509–513.  https://doi.org/10.1038/35107000.ADSCrossRefGoogle Scholar
  41. 41.
    Corkum, P. B., & Krausz, F. (2007). Attosecond science. Nature Physics, 3, 381–387.  https://doi.org/10.1038/nphys620.ADSCrossRefGoogle Scholar
  42. 42.
    Krausz, F., & Ivanov, M. (2009). Attosecond physics. Reviews of Modern Physics, 81, 163–234.  https://doi.org/10.1103/RevModPhys.81.163.ADSCrossRefGoogle Scholar
  43. 43.
    Wirth, A., et al. (2011). Synthesized light transients. Science, 334, 195–200.  https://doi.org/10.1126/science.1210268.ADSCrossRefGoogle Scholar
  44. 44.
    Hassan, M. T., et al. (2016). Optical attosecond pulses and tracking the nonlinear response of bound electrons. Nature, 530, 66–70.  https://doi.org/10.1038/nature16528.ADSCrossRefGoogle Scholar
  45. 45.
    Clark-MXR, Inc. (2018). Clark-MXR company history. Retrieved January 21, 2018 from http://www.cmxr.com/AboutUs/CompanyHistory.html.
  46. 46.
    Wilhelm, T., Piel, J., & Riedle, E. (1997). Sub-20-fs pulses tunable across the visible from a blue-pumped single-pass noncollinear parametric converter. Optics Letters, 22, 1494–1496.  https://doi.org/10.1364/OL.22.001494.ADSCrossRefGoogle Scholar
  47. 47.
    Cerullo, G., & De Silvestri, S. (2003). Ultrafast optical parametric amplifiers. Review of Scientific Instruments, 74, 1–18.  https://doi.org/10.1063/1.1523642.ADSCrossRefGoogle Scholar
  48. 48.
    Dudley, J. M., Genty, G., & Coen, S. (2006). Supercontinuum generation in photonic crystal fiber. Reviews of Modern Physics, 78, 1135–1184.  https://doi.org/10.1103/RevModPhys.78.1135.ADSCrossRefGoogle Scholar
  49. 49.
    Couairon, A., & Mysyrowicz, A. (2007). Femtosecond filamentation in transparent media. Physics Reports, 441, 47–189.  https://doi.org/10.1016/j.physrep.2006.12.005.ADSCrossRefGoogle Scholar
  50. 50.
    Udem, T., Holzwarth, R., & Hänsch, T. W. (2002). Optical frequency metrology. Nature, 416, 233–237.  https://doi.org/10.1038/416233a.ADSCrossRefGoogle Scholar
  51. 51.
    Hall, J. L. & Hänsch, T. W. (2015). Contributions to the development of laser-based precision spectroscopy, including the optical frequency comb technique. Retrieved November 25, 2015 from http://www.nobelprize.org/nobel_prizes/physics/laureates/2005/.
  52. 52.
    Xu, L., et al. (1996). Route to phase control of ultrashort light pulses. Optics Letters, 21, 2008–2010.  https://doi.org/10.1364/OL.21.002008.ADSCrossRefGoogle Scholar
  53. 53.
    Corkum, P. B. (1993). Plasma perspective on strong field multiphoton ionization. Physical Review Letters, 71, 1994–1997.  https://doi.org/10.1103/PhysRevLett.71.1994.ADSCrossRefGoogle Scholar
  54. 54.
    Brabec, T., & Krausz, F. (2000). Intense few-cycle laser fields: Frontiers of nonlinear optics. Reviews of Modern Physics, 72, 545–591.  https://doi.org/10.1103/RevModPhys.72.545.ADSCrossRefGoogle Scholar
  55. 55.
    Cho, S. H., Bouma, B. E., Ippen, E. P., & Fujimoto, J. G. (1999). Low-repetition-rate high-peak-power Kerr-lens mode-locked Ti:Al\(_2\)O\(_3\) laser with a multiple-pass cavity. Optics Letters, 24, 417–419.  https://doi.org/10.1364/OL.24.000417.ADSCrossRefGoogle Scholar
  56. 56.
    Naumov, S., et al. (2005). Approaching the microjoule frontier with femtosecond laser oscillators. New Journal of Physics, 7, 216. https://stacks.iop.org/1367-2630/7/i=1/a=216.ADSCrossRefGoogle Scholar
  57. 57.
    Dewald, S., et al. (2006). Ionization of noble gases with pulses directly from a laser oscillator. Optics Letters, 31, 2072–2074.  https://doi.org/10.1364/OL.31.002072.ADSCrossRefGoogle Scholar
  58. 58.
    Saraceno, C. J., et al. (2012). 275 W average output power from a femtosecond thin disk oscillator operated in a vacuum environment. Optics Express, 20, 23535–23541.  https://doi.org/10.1364/OE.20.023535.ADSCrossRefGoogle Scholar
  59. 59.
    Brons, J., et al. (2014). Energy scaling of Kerr-lens mode-locked thin-disk oscillators. Optics Letters, 39, 6442–6445.  https://doi.org/10.1364/OL.39.006442.ADSCrossRefGoogle Scholar
  60. 60.
    Bauer, D., Zawischa, I., Sutter, D. H., Killi, A., & Dekorsy, T. (2012). Mode-locked Yb:YAG thin-disk oscillator with 41 \(\upmu \)J pulse energy at 145 W average infrared power and high power frequency conversion. Optics Express, 20, 9698–9704.  https://doi.org/10.1364/OE.20.009698.ADSCrossRefGoogle Scholar
  61. 61.
    Saraceno, C. J., et al. (2014). Ultrafast thin-disk laser with 80 \(\upmu \)J pulse energy and 242 W of average power. Optics Letters, 39, 9–12.  https://doi.org/10.1364/OL.39.000009.ADSCrossRefGoogle Scholar
  62. 62.
    Brons, J., et al. (2017). Efficient, high-power, all-bulk spectral broadening in a quasi-waveguide. In 2017 European Conference on Lasers and Electro-Optics - European Quantum Electronics Conference, CF–9.4. IEEE.  https://doi.org/10.1109/CLEOE-EQEC.2017.8086741.
  63. 63.
    Znakovskaya, I., et al. (2014). Dual frequency comb spectroscopy with a single laser. Optics Letters, 39, 5471–5474.  https://doi.org/10.1364/OL.39.005471.ADSCrossRefGoogle Scholar
  64. 64.
    Pupeza, I., et al. (2017). Field-resolved spectroscopy in the molecular fingerprint region. In 2017 European Conference on Lasers and Electro-Optics - European Quantum Electronics Conference, CH–2.4. IEEE, Munich.  https://doi.org/10.1109/CLEOE-EQEC.2017.8086859.
  65. 65.
    Pronin, O. (2012). Towards a compact thin-disk-based femtosecond XUV source. Dissertation, Ludwig-Maximilians-Universität, München.Google Scholar
  66. 66.
    Schliesser, A., Picque, N., & Hänsch, T. W. (2012). Mid-infrared frequency combs. Nature Photonics, 6, 440–449.  https://doi.org/10.1038/nphoton.2012.142.ADSCrossRefGoogle Scholar
  67. 67.
    Eisele, M., et al. (2014). Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution. Nature Photonics, 8, 841–845.  https://doi.org/10.1038/nphoton.2014.225.ADSCrossRefGoogle Scholar
  68. 68.
    McClung, F. J., & Hellwarth, R. W. (1962). Giant optical pulsations from ruby. Journal of Applied Physics, 33, 828–829.  https://doi.org/10.1063/1.1777174.ADSCrossRefGoogle Scholar
  69. 69.
    Boyd, R. W. (2008). Chapter 11 - the electrooptic and photorefractive effects. Nonlinear optics (3rd ed., pp. 511–541). Burlington: Academic.  https://doi.org/10.1016/B978-0-12-369470-6.00011-3.CrossRefGoogle Scholar
  70. 70.
    (2006). Q-switching. Solid-state laser engineering (6th ed., pp. 488–533). New York: Springer.  https://doi.org/10.1007/0-387-29338-8_9.
  71. 71.
    Svelto, O. (2010). 8 Transient laser behavior. Principles of lasers (5th ed., pp. 313–373). New York: Springer.  https://doi.org/10.1007/978-1-4419-1302-9.CrossRefGoogle Scholar
  72. 72.
    Lamb, W. E. (1964). Theory of an optical maser. Physical Review, 134, A1429–A1450.  https://doi.org/10.1103/PhysRev.134.A1429.ADSCrossRefGoogle Scholar
  73. 73.
    Kärtner, F. X., Aus der Au, J., & Keller, U. (1998). Mode-locking with slow and fast saturable absorbers-what’s the difference? IEEE Journal of Selected Topics in Quantum Electronics, 4, 159–168.  https://doi.org/10.1109/2944.686719.ADSCrossRefGoogle Scholar
  74. 74.
    Weiner, A. M. (2008). Ultrafast optics. New Jercy: Wiley, Inc.,  https://doi.org/10.1002/9780470473467.CrossRefGoogle Scholar
  75. 75.
    Diels, J.-C., & Rudolph, W. (2006). Ultrashort laser pulse phenomena (2nd ed.). Burlington: Academic.Google Scholar
  76. 76.
    Shank, C. V., & Ippen, E. P. (1974). Subpicosecond kilowatt pulses from a mode-locked cw dye laser. Applied Physics Letters, 24, 373–375.  https://doi.org/10.1063/1.1655222.ADSCrossRefGoogle Scholar
  77. 77.
    Fork, R. L., Greene, B. I., & Shank, C. V. (1981). Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking. Applied Physics Letters, 38, 671–672.  https://doi.org/10.1063/1.92500.ADSCrossRefGoogle Scholar
  78. 78.
    Weiner, A. M. (2008). Principles of mode-locking. Ultrafast optics (pp. 32–84). New Jercy: Wiley, Inc.,  https://doi.org/10.1002/9780470473467.ch2.CrossRefGoogle Scholar
  79. 79.
    Weiner, A. M. (2008). Ultrafast-pulse measurement methods. Ultrafast optics (pp. 85–146). New Jercy: Wiley, Inc.,  https://doi.org/10.1002/9780470473467.ch3.CrossRefGoogle Scholar
  80. 80.
    Diels, J.-C., & Rudolph, W. (2006). 9 - diagnostic techniques. Ultrashort laser pulse phenomena (2nd ed., pp. 457–489). Burlington: Academic.  https://doi.org/10.1016/B978-012215493-5/50010-0.CrossRefGoogle Scholar
  81. 81.
    Valdmanis, J. A., Fork, R. L., & Gordon, J. P. (1985). Generation of optical pulses as short as 27 femtoseconds directly from a laser balancing self-phase modulation, group-velocity dispersion, saturable absorption, and saturable gain. Optics Letters, 10, 131–133.  https://doi.org/10.1364/OL.10.000131.ADSCrossRefGoogle Scholar
  82. 82.
    Zhang, J., et al. (2015). 49-fs Yb:YAG thin-disk oscillator with distributed Kerr-lens mode-locking. In 2015 European Conference on Lasers and Electro-Optics - European Quantum Electronics Conference, PDA.1. Optical Society of America. https://www.osapublishing.org/abstract.cfm?URI=EQEC-2015-PD_A_1.
  83. 83.
    Paradis, C., et al. (2017). Generation of 35-fs pulses from a Kerr lens mode-locked Yb:Lu\(_2\)O\(_3\) thin-disk laser. Optics Express, 25, 14918–14925.  https://doi.org/10.1364/OE.25.014918.ADSCrossRefGoogle Scholar
  84. 84.
    Stolen, R. H., & Lin, C. (1978). Self-phase-modulation in silica optical fibers. Physical Review A, 17, 1448–1453.  https://doi.org/10.1103/PhysRevA.17.1448.ADSCrossRefGoogle Scholar
  85. 85.
    Nakatsuka, H., Grischkowsky, D., & Balant, A. C. (1981). Nonlinear picosecond-pulse propagation through optical fibers with positive group velocity dispersion. Physical Review Letters, 47, 910–913.  https://doi.org/10.1103/PhysRevLett.47.910.ADSCrossRefGoogle Scholar
  86. 86.
    Treacy, E. (1969). Optical pulse compression with diffraction gratings. IEEE Journal of Quantum Electronics, 5, 454–458.  https://doi.org/10.1109/JQE.1969.1076303.ADSCrossRefGoogle Scholar
  87. 87.
    Fork, R. L., Martinez, O. E., & Gordon, J. P. (1984). Negative dispersion using pairs of prisms. Optics Letters, 9, 150–152.  https://doi.org/10.1364/OL.9.000150.ADSCrossRefGoogle Scholar
  88. 88.
    Fork, R. L., Cruz, C. H. B., Becker, P. C., & Shank, C. V. (1987). Compression of optical pulses to six femtoseconds by using cubic phase compensation. Optics Letters, 12, 483–485.  https://doi.org/10.1364/OL.12.000483.ADSCrossRefGoogle Scholar
  89. 89.
    Moulton, P. F. (1986). Spectroscopic and laser characteristics of Ti:Al\(_2\)O\(_3\). Journal of the Optical Society of America B, 3, 125–133.  https://doi.org/10.1364/JOSAB.3.000125.ADSCrossRefGoogle Scholar
  90. 90.
    Haus, H. A. (1975). Theory of mode locking with a fast saturable absorber. Journal of Applied Physics, 46, 3049–3058.  https://doi.org/10.1063/1.321997.ADSCrossRefGoogle Scholar
  91. 91.
    Baltuška, A., Wei, Z., Pshenichnikov, M. S., & Wiersma, D. A. (1997). Optical pulse compression to 5 fs at a 1-MHz repetition rate. Optics Letters, 22, 102–104.  https://doi.org/10.1364/OL.22.000102.ADSCrossRefGoogle Scholar
  92. 92.
    Lariontsev, E. G., & Serkin, V. N. (1975). Possibility of using self-focusing for increasing contrast and narrowing of ultrashort light pulses. Soviet Journal of Quantum Electronics, 5, 796. https://stacks.iop.org/0049-1748/5/i=7/a=A21.CrossRefGoogle Scholar
  93. 93.
    Salin, F., Piché, M., & Squier, J. (1991). Mode locking of Ti:Al\(_2\)O\(_3\) lasers and self-focusing: A gaussian approximation. Optics Letters, 16, 1674–1676.  https://doi.org/10.1364/OL.16.001674.ADSCrossRefGoogle Scholar
  94. 94.
    Piché, M. (1991). Beam reshaping and self-mode-locking in nonlinear laser resonators. Optics Communications, 86, 156–160.  https://doi.org/10.1016/0030-4018(91)90552-O.ADSCrossRefGoogle Scholar
  95. 95.
    Spinelli, L., Couillaud, B., Goldblatt, N. & Negus, D. K., (1991). Starting and generation of sub-100fs pulses in Ti:Al\(_2\)O\(_3\) by self-focusing. In Conference on Lasers and Electro-Optics, CPD7. Optical Society of America. http://www.osapublishing.org/abstract.cfm?URI=CLEO-1991-CPD7.
  96. 96.
    Rausch, S., et al. (2008). Controlled waveforms on the single-cycle scale from a femtosecond oscillator. Optics Express, 16, 9739–9745.  https://doi.org/10.1364/OE.16.009739.ADSCrossRefGoogle Scholar
  97. 97.
    Razskazovskaya, O., Krausz, F., & Pervak, V. (2017). Multilayer coatings for femto- and attosecond technology. Optica, 4, 129–138.  https://doi.org/10.1364/OPTICA.4.000129.CrossRefGoogle Scholar
  98. 98.
    Szipöcs, R., Spielmann, C., Krausz, F., & Ferencz, K. (1994). Chirped multilayer coatings for broadband dispersion control in femtosecond lasers. Optics Letters, 19, 201–203.  https://doi.org/10.1364/OL.19.000201.ADSCrossRefGoogle Scholar
  99. 99.
    McPherson, A., et al. (1987). Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases. Journal of the Optical Society of America B, 4, 595–601.  https://doi.org/10.1364/JOSAB.4.000595.ADSCrossRefGoogle Scholar
  100. 100.
    Ferray, M., et al. (1988). Multiple-harmonic conversion of 1064 nm radiation in rare gases. Journal of Physics B: Atomic, Molecular and Optical Physics, 21, L31. https://stacks.iop.org/0953-4075/21/i=3/a=001.ADSCrossRefGoogle Scholar
  101. 101.
    Li, X. F., L’Huillier, A., Ferray, M., Lompré, L. A., & Mainfray, G. (1989). Multiple-harmonic generation in rare gases at high laser intensity. Physical Review A, 39, 5751–5761.  https://doi.org/10.1103/PhysRevA.39.5751.ADSCrossRefGoogle Scholar
  102. 102.
    Lewenstein, M., Balcou, P., Ivanov, M. Y., L’Huillier, A., & Corkum, P. B. (1994). Theory of high-harmonic generation by low-frequency laser fields. Physical Review A, 49, 2117–2132.  https://doi.org/10.1103/PhysRevA.49.2117.ADSCrossRefGoogle Scholar
  103. 103.
    Goulielmakis, E., et al. (2008). Single-cycle nonlinear optics. Science, 320, 1614–1617.  https://doi.org/10.1126/science.1157846.ADSCrossRefGoogle Scholar
  104. 104.
    Zhao, K., et al. (2012). Tailoring a 67 attosecond pulse through advantageous phase-mismatch. Optics Letters, 37, 3891–3893.  https://doi.org/10.1364/OL.37.003891.ADSCrossRefGoogle Scholar
  105. 105.
    Gaumnitz, T., et al. (2017). Streaking of 43-attosecond soft-X-ray pulses generated by a passively CEP-stable mid-infrared driver. Optics Express, 25, 27506–27518.  https://doi.org/10.1364/OE.25.027506.ADSCrossRefGoogle Scholar
  106. 106.
    Chini, M., Zhao, K., & Chang, Z. (2014). The generation, characterization and applications of broadband isolated attosecond pulses. Nature Photonics, 8, 178–186.  https://doi.org/10.1038/nphoton.2013.362.ADSCrossRefGoogle Scholar
  107. 107.
    Apolonski, A., et al. (2000). Controlling the phase evolution of few-cycle light pulses. Physical Review Letters, 85, 740–743.  https://doi.org/10.1103/PhysRevLett.85.740.ADSCrossRefGoogle Scholar
  108. 108.
    Seres, E., Seres, J. & Spielmann, C., (2012). Extreme ultraviolet light source based on intracavity high harmonic generation in a mode locked Ti:sapphire oscillator with 9.4 MHz repetition rate. Optics Express20, 6185–6190.  https://doi.org/10.1364/OE.20.006185.ADSCrossRefGoogle Scholar
  109. 109.
    Chiang, C.-T., Blattermann, A., Huth, M., Kirschner, J., & Widdra, W. (2012). High-order harmonic generation at 4 MHz as a light source for time-of-flight photoemission spectroscopy. Applied Physics Letters, 101, 071116.  https://doi.org/10.1063/1.4746264.ADSCrossRefGoogle Scholar
  110. 110.
    Gohle, C., et al. (2005). A frequency comb in the extreme ultraviolet. Nature, 436, 234–237.  https://doi.org/10.1038/nature03851.ADSCrossRefGoogle Scholar
  111. 111.
    Pupeza, I., et al. (2013). Compact high-repetition-rate source of coherent 100 eV radiation. Nature Photonics, 7, 608.  https://doi.org/10.1038/nphoton.2013.156.ADSCrossRefGoogle Scholar
  112. 112.
    Carstens, H., et al. (2016). High-harmonic generation at 250 MHz with photon energies exceeding 100 eV. Optica, 3, 366–369.  https://doi.org/10.1364/OPTICA.3.000366.CrossRefGoogle Scholar
  113. 113.
    Lee, J., Carlson, D. R., & Jones, R. J. (2011). Optimizing intracavity high harmonic generation for XUV fs frequency combs. Optics Express, 19, 23315–23326.  https://doi.org/10.1364/OE.19.023315.ADSCrossRefGoogle Scholar
  114. 114.
    Cingoz, A., et al. (2012). Direct frequency comb spectroscopy in the extreme ultraviolet. Nature, 482, 68–71.  https://doi.org/10.1038/nature10711.ADSCrossRefGoogle Scholar
  115. 115.
    Ozawa, A., Zhao, Z., Kuwata-Gonokami, M., & Kobayashi, Y. (2015). High average power coherent VUV generation at 10 MHz repetition frequency by intracavity high harmonic generation. Optics Express, 23, 15107–15118.  https://doi.org/10.1364/OE.23.015107.ADSCrossRefGoogle Scholar
  116. 116.
    Yost, D. C., Schibli, T. R., & Ye, J. (2008). Efficient output coupling of intracavity high-harmonic generation. Optics Letters, 33, 1099–1101.  https://doi.org/10.1364/OL.33.001099.ADSCrossRefGoogle Scholar
  117. 117.
    Ozawa, A., et al. (2008). Non-collinear high harmonic generation: a promising outcoupling method for cavity-assisted XUV generation. Optics Express, 16, 6233–6239.  https://doi.org/10.1364/OE.16.006233.ADSCrossRefGoogle Scholar
  118. 118.
    Pronin, O., et al. (2011). Ultrabroadband efficient intracavity XUV output coupler. Optics Express, 19, 10232–10240.  https://doi.org/10.1364/OE.19.010232.ADSCrossRefGoogle Scholar
  119. 119.
    Esser, D., et al. (2013). Laser-manufactured mirrors for geometrical output coupling of intracavity-generated high harmonics. Optics Express, 21, 26797–26805.  https://doi.org/10.1364/OE.21.026797.ADSCrossRefGoogle Scholar
  120. 120.
    Lilienfein, N., et al. (2017). Enhancement cavities for few-cycle pulses. Optics Letters, 42, 271–274.  https://doi.org/10.1364/OL.42.000271.ADSCrossRefGoogle Scholar
  121. 121.
    Salin, F. (2005). How to manipulate and change the characteristics of laser pulses. In C. Rullière (Ed.), Femtosecond laser pulses: Principles and experiments (pp. 175–194). New York: Springer.  https://doi.org/10.1007/0-387-26674-7_6.CrossRefGoogle Scholar
  122. 122.
    Belanger, P. & Boivin, J. Multigigawatt peak-power generation from a tandem of TEA-CO\(_2\) lasers. IEEE Journal of Quantum Electronics11, 895–896 (1975).  https://doi.org/10.1109/JQE.1975.1068836. Earlier, not accessible paper in Belanger, P. A., & Boivin, J. (1974). Phys. Can. 30(3), 47.ADSCrossRefGoogle Scholar
  123. 123.
    Georges, P., et al. (1991). High-efficiency multipass Ti:sapphire amplifiers for a continuous-wave single-mode laser. Optics Letters, 16, 144–146.  https://doi.org/10.1364/OL.16.000144.ADSCrossRefGoogle Scholar
  124. 124.
    Strickland, D., & Mourou, G. (1985). Compression of amplified chirped optical pulses. Optics Communications, 56, 219–221.  https://doi.org/10.1016/0030-4018(85)90120-8.ADSCrossRefGoogle Scholar
  125. 125.
    Perry, M. D., & Mourou, G. (1994). Terawatt to petawatt subpicosecond lasers. Science, 264, 917–924.  https://doi.org/10.1126/science.264.5161.917.ADSCrossRefGoogle Scholar
  126. 126.
    Perry, M. D., et al. (1999). Petawatt laser pulses. Optics Letters, 24, 160–162.  https://doi.org/10.1364/OL.24.000160.ADSCrossRefGoogle Scholar
  127. 127.
    Dubietis, A., Jonusauskas, G., & Piskarskas, A. (1992). Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal. Optics Communications, 88, 437–440.  https://doi.org/10.1016/0030-4018(92)90070-8.ADSCrossRefGoogle Scholar
  128. 128.
    Russbueldt, P., Mans, T., Weitenberg, J., Hoffmann, H. D., & Poprawe, R. (2010). Compact diode-pumped 1.1 kW Yb:YAG Innoslab femtosecond amplifier. Optics Letters, 35, 4169–4171.  https://doi.org/10.1364/OL.35.004169.ADSCrossRefGoogle Scholar
  129. 129.
    Mikkelsen, A., et al. (2009). Photoemission electron microscopy using extreme ultraviolet attosecond pulse trains. Review of Scientific Instruments, 80, 123703.  https://doi.org/10.1063/1.3263759.ADSCrossRefGoogle Scholar
  130. 130.
    Aidelsburger, M., Kirchner, F. O., Krausz, F., & Baum, P. (2010). Single-electron pulses for ultrafast diffraction. Proceedings of the National Academy of Sciences of the United States of America, 107, 19714–19719.  https://doi.org/10.1073/pnas.1010165107.ADSCrossRefGoogle Scholar
  131. 131.
    Gliserin, A., Walbran, M., Krausz, F., & Baum, P. (2015). Sub-phonon-period compression of electron pulses for atomic diffraction. Nature Communications, 6, 8723.  https://doi.org/10.1038/ncomms9723.
  132. 132.
    Liu, Y., et al. (2007). Towards non-sequential double ionization of Ne and Ar using a femtosecond laser oscillator. Optics Express, 15, 18103–18110.  https://doi.org/10.1364/OE.15.018103.ADSCrossRefGoogle Scholar
  133. 133.
    Bergues, B., Kübel, M., Kling, N. G., Burger, C., & Kling, M. F. (2015). Single-cycle non-sequential double ionization. IEEE Journal of Selected Topics in Quantum Electronics, 21, 1–9.  https://doi.org/10.1109/JSTQE.2015.2443976.CrossRefGoogle Scholar
  134. 134.
    Giesen, A., et al. (1994). Scalable concept for diode-pumped high-power solid-state lasers. Applied Physics B, 58, 365–372.  https://doi.org/10.1007/BF01081875.ADSCrossRefGoogle Scholar
  135. 135.
    Giesen, A., & Speiser, J. (2007). Fifteen years of work on thin-disk lasers: Results and scaling laws. IEEE Journal of Selected Topics in Quantum Electronics, 13, 598–609.  https://doi.org/10.1109/JSTQE.2007.897180.ADSCrossRefGoogle Scholar
  136. 136.
    Hecht, J. (2014). Photonic frontiers: Disk lasers: Higher powers and shorter pulses from thin-disk lasers. Laser Focus World, 50, 89–91. https://digital.laserfocusworld.com/laserfocusworld/201401?pg=91#pg91.
  137. 137.
    Schad, S.-S., et al. (2016). Recent development of disk lasers at TRUMPF. Proceedings of SPIE, 9726, p. 972615.  https://doi.org/10.1117/12.2212789.
  138. 138.
    Schad, S. -S., et al. (2014). Near fundamental mode high-power thin-disk laser. In Proceedings of SPIE, 8959, p. 89590U. http://dx.doi.org/10.1117/12.2046689
  139. 139.
    Brons, J., et al. (2016). Powerful 100-fs-scale Kerr-lens mode-locked thin-disk oscillator. Optics Letters, 41, 3567–3570.  https://doi.org/10.1364/OL.41.003567.ADSCrossRefGoogle Scholar
  140. 140.
    Kanda, N., et al. (2013). High-pulse-energy Yb:YAG thin disk mode-locked oscillator for intra-cavity high harmonic generation. Advanced solid-state lasers congress, AF3A.8. Optical Society of America.  https://doi.org/10.1364/ASSL.2013.AF3A.8.
  141. 141.
    Eilanlou, A. A., Nabekawa, Y., Kuwata-Gonokami, M., & Midorikawa, K. (2014). Femtosecond laser pulses in a Kerr lens mode-locked thin-disk ring oscillator with an intra-cavity peak power beyond 100 MW. Japanese Journal of Applied Physics, 53, 082701.  https://doi.org/10.7567/JJAP.53.082701.ADSCrossRefGoogle Scholar
  142. 142.
    Koechner, W. (2006). Properties of solid-state laser materials. Solid-state laser engineering (6th ed., pp. 38–101). New York: Springer.  https://doi.org/10.1007/0-387-29338-8_3.CrossRefzbMATHGoogle Scholar
  143. 143.
    Wolter, J.-H., Ahmed, M. A., & Graf, T. (2017). Thin-disk laser operation of Ti:sapphire. Optics Letters, 42, 1624–1627.  https://doi.org/10.1364/OL.42.001624.ADSCrossRefGoogle Scholar
  144. 144.
    Takagi, S., et al. (2012). High-power (over 100 mW) green laser diodes on semipolar 2021 GaN substrates operating at wavelengths beyond 530 nm. Applied Physics Express, 5, 082102. https://stacks.iop.org/1882-0786/5/i=8/a=082102.ADSCrossRefGoogle Scholar
  145. 145.
    Yanashima, K., et al. (2012). Long-lifetime true green laser diodes with output power over 50 mW above 525 nm grown on semipolar 2021 GaN substrates. Applied Physics Express, 5, 082103. https://stacks.iop.org/1882-0786/5/i=8/a=082103.ADSCrossRefGoogle Scholar
  146. 146.
    Akasaki, I. (2015). Blue light: A fascinating journey (Nobel lecture). Angewandte Chemie International Edition, 54, 7750–7763.  https://doi.org/10.1002/anie.201502664.CrossRefGoogle Scholar
  147. 147.
    Viana, B. (2006). Yb-doped solid-state lasers and materials. Solid-state lasers and applications (pp. 77–112)., Optical Science and Engineering Boca Raton: CRC Press.  https://doi.org/10.1201/9781420005295.ch2.CrossRefGoogle Scholar
  148. 148.
    Südmeyer, T., et al. (2009). High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation. Applied Physics B, 97, 281.  https://doi.org/10.1007/s00340-009-3700-z.CrossRefGoogle Scholar
  149. 149.
    Baer, C. R. E., et al. (2012). Frontiers in passively mode-locked high-power thin disk laser oscillators. Optics Express, 20, 7054–7065.  https://doi.org/10.1364/OE.20.007054.ADSCrossRefGoogle Scholar
  150. 150.
    Diebold, A., et al. (2013). SESAM mode-locked Yb:CaGdAlO\(_4\) thin disk laser with 62 fs pulse generation. Optics Letters, 38, 3842–3845.  https://doi.org/10.1364/OL.38.003842.ADSCrossRefGoogle Scholar
  151. 151.
    Zhang, J. et al. (2018). Multi-mW few-cycle mid-infrared continuum spanning from 500 to 2250 cm\(^{-1}\). Light: Science & Applications.  https://doi.org/10.1038/lsa.2017.180.ADSCrossRefGoogle Scholar
  152. 152.
    Diels, J.-C., & Rudolph, W. (2006). 5 - ultrashort sources i: Fundamentals. Ultrashort laser pulse phenomena (2nd ed., pp. 277–339). Burlington: Academic.  https://doi.org/10.1016/B978-012215493-5/50006-9.CrossRefGoogle Scholar
  153. 153.
    Weiner, A. M. (2008). Introduction and review. Ultrafast optics (pp. 1–31). New Jercy: Wiley, Inc.,  https://doi.org/10.1002/9780470473467.ch1.CrossRefGoogle Scholar
  154. 154.
    Ducasse, A., Rullière, C., & Couillaud, B. (2005). Methods for the generation of ultrashort laser pulses: Mode-locking. In C. Rullière (Ed.), Femtosecond laser pulses: Principles and experiments (pp. 57–87). New York: Springer.  https://doi.org/10.1007/0-387-26674-7_3.CrossRefGoogle Scholar
  155. 155.
    Koechner, W. (2006). Mode locking. Solid-state laser engineering (6th ed., pp. 534–586). New York: Springer.  https://doi.org/10.1007/0-387-29338-8_10.CrossRefzbMATHGoogle Scholar
  156. 156.
    Boyd, R. W. (2008). Chapter 1 - the nonlinear optical susceptibility. Nonlinear optics (3rd ed.). Burlington: Academic.  https://doi.org/10.1016/B978-0-12-369470-6.00001-0.CrossRefGoogle Scholar
  157. 157.
    Boyd, R. W. (2008). Chapter 4 - the intensity-dependent refractive index. Nonlinear optics (3rd ed., pp. 207–252). Burlington: Academic.  https://doi.org/10.1016/B978-0-12-369470-6.00004-6.CrossRefGoogle Scholar
  158. 158.
    Sutherland, R . L. (2003). Optical properties of selected third order nonlinear optical materials. Handbook of nonlinear optics (2nd ed.)., Optical science and engineering. Boca Raton: CRC Press.  https://doi.org/10.1201/9780203912539.ch8.
  159. 159.
    Marburger, J. (1975). Self-focusing theory. Progress in quantum electronics, 4, Part 1, 35–110.  https://doi.org/10.1016/0079-6727(75)90003-8.ADSCrossRefGoogle Scholar
  160. 160.
    Boyd, R. W. (2008). Chapter 7 - processes resulting from the intensity-dependent refractive index. Nonlinear optics (3rd ed., pp. 329–390). Burlington: Academic.  https://doi.org/10.1016/B978-0-12-369470-6.00007-1.CrossRefGoogle Scholar
  161. 161.
    Steier, W. H. (1966). The ray packet equivalent of a gaussian light beam. Applied Optics, 5, 1229–1233.  https://doi.org/10.1364/AO.5.001229.ADSCrossRefGoogle Scholar
  162. 162.
    Herink, G., Jalali, B., Ropers, C., & Solli, D. R. (2016). Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate. Nature Photonics, 10, 321–326.  https://doi.org/10.1038/nphoton.2016.38.ADSCrossRefGoogle Scholar
  163. 163.
    Svelto, O. (2010). 4 ray and wave propagation through optical media. Principles of lasers (5th ed.). New York: Springer.  https://doi.org/10.1007/978-1-4419-1302-9.CrossRefGoogle Scholar
  164. 164.
    Oberthaler, M., & Höpfel, R. A. (1993). Special narrowing of ultrashort laser pulses by self-phase modulation in optical fibers. Applied Physics Letters, 63, 1017–1019.  https://doi.org/10.1063/1.109820.ADSCrossRefGoogle Scholar
  165. 165.
    Agrawal, G. (2013). Chapter 4 - self-phase modulation. Nonlinear fiber optics, optics and photonics (5th ed., pp. 87–128). Boston: Academic.  https://doi.org/10.1016/B978-0-12-397023-7.00004-8.CrossRefGoogle Scholar
  166. 166.
    Bellini, M., & Hänsch, T. W. (2000). Phase-locked white-light continuum pulses: Toward a universal optical frequency-comb synthesizer. Optics Letters, 25, 1049–1051.  https://doi.org/10.1364/OL.25.001049.ADSCrossRefGoogle Scholar
  167. 167.
    Cundiff, S. T., & Ye, J. (2003). Colloquium: Femtosecond optical frequency combs. Reviews of Modern Physics, 75, 325–342.  https://doi.org/10.1103/RevModPhys.75.325.ADSCrossRefGoogle Scholar
  168. 168.
    Boyd, R. W. (2008). Nonlinear optics (3rd ed.). Burlington: Academic. https://www.sciencedirect.com/science/book/9780123694706.CrossRefGoogle Scholar
  169. 169.
    Stegeman, G. I. (1997). \(\chi ^{(2)}\) cascading: Nonlinear phase shifts. Quantum and semiclassical optics: Journal of the European optical society part B, 9, 139. https://stacks.iop.org/1355-5111/9/i=2/a=003.ADSCrossRefGoogle Scholar
  170. 170.
    Wise, F. W., & Moses, J. (2009). Self-focusing and self-defocusing of femtosecond pulses with cascaded quadratic nonlinearities. In R. W. Boyd, S. G. Lukishova, & Y. Shen (Eds.), Self-focusing: Past and present: Fundamentals and prospects (pp. 481–506). New York: Springer.  https://doi.org/10.1007/978-0-387-34727-1_20.CrossRefGoogle Scholar
  171. 171.
    Diels, J.-C., & Rudolph, W. (2006). 1 - fundamentals. Ultrashort laser pulse phenomena (2nd ed., pp. 1–60). Burlington: Academic.  https://doi.org/10.1016/B978-012215493-5/50002-1.CrossRefGoogle Scholar
  172. 172.
    Weiner, A. M. (2008). Dispersion and dispersion compensation. Ultrafast optics (pp. 147–197). New Jercy: Wiley, Inc.,  https://doi.org/10.1002/9780470473467.ch4.CrossRefGoogle Scholar
  173. 173.
    Diels, J.-C., & Rudolph, W. (2006). 2 - femtosecond optics. Ultrashort laser pulse phenomena (2nd ed., pp. 61–142). Burlington: Academic.  https://doi.org/10.1016/B978-012215493-5/50003-3.CrossRefGoogle Scholar
  174. 174.
    Kane, S., & Squier, J. (1995). Grating compensation of third-order material dispersion in the normal dispersion regime: Sub-100-fs chirped-pulse amplification using a fiber stretcher and grating-pair compressor. IEEE Journal of Quantum Electronics, 31, 2052–2057.  https://doi.org/10.1109/3.469287.ADSCrossRefGoogle Scholar
  175. 175.
    Szipőcs, R., & Kőházi-Kis, A. (1997). Theory and design of chirped dielectric laser mirrors. Applied Physics B, 65, 115–135.  https://doi.org/10.1007/s003400050258.CrossRefGoogle Scholar
  176. 176.
    Trubetskov, M. K., Pervak, V., & Tikhonravov, A. V. (2010). Phase optimization of dispersive mirrors based on floating constants. Optics Express, 18, 27613–27618.  https://doi.org/10.1364/OE.18.027613.ADSCrossRefGoogle Scholar
  177. 177.
    Kärtner, F. X., et al. (2001). Ultrabroadband double-chirped mirror pairs for generation of octave spectra. Journal of the Optical Society of America B, 18, 882–885.  https://doi.org/10.1364/JOSAB.18.000882.ADSCrossRefGoogle Scholar
  178. 178.
    Pervak, V., Ahmad, I., Trubetskov, M. K., Tikhonravov, A. V., & Krausz, F. (2009). Double-angle multilayer mirrors with smooth dispersion characteristics. Optics Express, 17, 7943–7951.  https://doi.org/10.1364/OE.17.007943.ADSCrossRefGoogle Scholar
  179. 179.
    Udem, T., Reichert, J., Holzwarth, R., & Hänsch, T. W. (1999). Accurate measurement of large optical frequency differences with a mode-locked laser. Optics Letters, 24, 881–883.  https://doi.org/10.1364/OL.24.000881.ADSCrossRefGoogle Scholar
  180. 180.
    Briles, T. C., Yost, D. C., Cingöz, A., Ye, J., & Schibli, T. R. (2010). Simple piezoelectric-actuated mirror with 180 kHz servo bandwidth. Optics Express, 18, 9739–9746.  https://doi.org/10.1364/OE.18.009739.ADSCrossRefGoogle Scholar
  181. 181.
    Reichert, J., Holzwarth, R., Udem, T., & Hänsch, T. (1999). Measuring the frequency of light with mode-locked lasers. Optics Communications, 172, 59–68.  https://doi.org/10.1016/S0030-4018(99)00491-5.ADSCrossRefGoogle Scholar
  182. 182.
    Cundiff, S. T., Ye, J., & Hall, J. L. (2001). Optical frequency synthesis based on mode-locked lasers. Review of Scientific Instruments, 72, 3749–3771.  https://doi.org/10.1063/1.1400144.ADSCrossRefGoogle Scholar
  183. 183.
    Boyd, R. W. (2008). Chapter 2 - wave-equation description of nonlinear optical interactions. Nonlinear optics (3rd ed., pp. 69–133). Burlington: Academic.  https://doi.org/10.1016/B978-0-12-369470-6.00002-2.CrossRefGoogle Scholar
  184. 184.
    Petrov, V. (2015). Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals. Progress in Quantum Electronics, 42, 1–106.  https://doi.org/10.1016/j.pquantelec.2015.04.001.ADSMathSciNetCrossRefGoogle Scholar
  185. 185.
    Petrov, V. (2012). Parametric down-conversion devices: The coverage of the mid-infrared spectral range by solid-state laser sources. Optical Materials, 34, 536–554.  https://doi.org/10.1016/j.optmat.2011.03.042.ADSCrossRefGoogle Scholar
  186. 186.
    Svelto, O. (2010). 1 introductory concepts. Principles of lasers (5th ed., pp. 1–15). New York: Springer.  https://doi.org/10.1007/978-1-4419-1302-9.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institut de Science et d’Ingénierie SupramoléculairesStrasbourgFrance

Personalised recommendations