Environmental Performance Assessment of European Countries

  • Clara B. VazEmail author
  • Ângela P. Ferreira
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 278)


The European Union (EU) has been promoting an integrated approach to climate protection and energy policy, through a set of key objectives for 2020, 2030 and 2050, linking Europe’s green agenda with its need for energy security and competitiveness. This paper aims to evaluate the environmental efficiency of European Countries from 2010 to 2015 towards 2020 targets, through a Data Envelopment Analysis (DEA) model. The DEA model assesses the ability of each country in minimizing current resources while maximizing the gross domestic product (GDP) and minimizing undesirable outputs, such as GhG emissions. The DEA model is based on Directional Distance Function (DDF), imposing weak disposability for the undesirable output (UO). Results obtained show that globally, in the period under analysis, the EU has increased its environmental efficiency which is consistent with the analysis of the indicators of the 2020 climate and energy package.


Data envelopment analysis Environmental efficiency Directional distance function Europe 20-20-20 targets 


  1. 1.
    Chambers, R., Chung, Y., Färe, R.: Benefit and distance functions. J. Econ. Theor. 70, 407–419 (1996)CrossRefGoogle Scholar
  2. 2.
    Chung, Y.: Directional distance functions and undesirable outputs. Ph.D. Dissertation, Southern Illinois University (1996)Google Scholar
  3. 3.
    Chung, Y., Färe, R., Grosskopf, S.: Productivity and undesirable outputs: a directional distance function approach. J. Environ. Manag. 51, 229–240 (1997)CrossRefGoogle Scholar
  4. 4.
    Sueyoshi, T., Yuan, Y., Goto, M.: A literature study for DEA applied to energy and environment. Energy Econ. 62, 104–124 (2017)CrossRefGoogle Scholar
  5. 5.
    Mardani, A., Zavadskas, E.K., Streimikiene, D., Ahmad Jusoh, A., Khoshnoudi, M.: A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency. Renew. Sustain. Energy Rev. 70, 1298–1322 (2017)CrossRefGoogle Scholar
  6. 6.
    Zofio, J., Prieto, A.: Environmental efficiency and regulatory standards: the case of CO2 emissions from OECD industries. Resour. Energy Econ. 23, 63–83 (2001)Google Scholar
  7. 7.
    Färe, R., Grosskopf, S., Hernandez-Sancho, F.: Environmental performance: an index number approach. Resour. Energy Econ. 26, 343–352 (2004)CrossRefGoogle Scholar
  8. 8.
    Zhou, P., Ang, B., Poh, K.: Slacks-based efficiency measures for modeling environmental performance. Ecol. Econ. 60, 111–118 (2006)CrossRefGoogle Scholar
  9. 9.
    Zhou, P., Poh, K., Ang, B.: A non-radial DEA approach to measuring environmental performance. Eur. J. Oper. Res. 178, 1–9 (2007)CrossRefGoogle Scholar
  10. 10.
    Zhou, P., Ang, B., Poh, K.: Measuring environmental performance under different environmental DEA technologies. Energy Econ. 30, 1–14 (2008)CrossRefGoogle Scholar
  11. 11.
    Chiu, C., Liou, J., Wu, P., Fang, C.: Measuring efficiency of decision-making units. Energy Econ. 34, 1392–1399 (2012)CrossRefGoogle Scholar
  12. 12.
    Lin, E., Chen, P., Chen, C.: Measuring green productivity of country: a generalized metafrontier Malmquist productivity index approach. Energy 55, 340–353 (2013)CrossRefGoogle Scholar
  13. 13.
    Camarero, M., Castillo, J., Picazo-Tadeo, A., Tamarit, C.: Eco-efficiency and convergence in OECD countries. Environ. Resour. Econ. 55, 87–106 (2013)CrossRefGoogle Scholar
  14. 14.
    Lin, E., Chen, P., Chen, C.: Measuring the environmental efficiency of countries: a directional distance function metafrontier approach. J. Environ. Manag. 119, 134–142 (2013)Google Scholar
  15. 15.
    Bampatsou, C., Papadopoulos, S., Zervas, E.: Technical efficiency of economic systems of EU-15 countries based on energy consumption. Energ. Policy 55, 426–434 (2013)CrossRefGoogle Scholar
  16. 16.
    Vaz, C., Ferreira, Â.: Measuring technical efficiency of european countries using DEA. In: Godinho, P., Dias, J. (eds), Assessment Methodologies: Energy, Mobility and Other Real World Application. Imprensa da Universidade de Coimbra, pp. 17–32 (2015)Google Scholar
  17. 17.
    Li, M., Wang, Q.: International environmental efficiency differences and their determinants. Energy 78, 411–420 (2014)CrossRefGoogle Scholar
  18. 18.
    Chang, M.: Energy intensity, target level of energy intensity, and room for improvement in energy intensity: an application to the study of regions in the EU. Energ Policy 67, 648–655 (2014)CrossRefGoogle Scholar
  19. 19.
    Pang, R., Deng, Z., Hu, J.: Clean energy use and total-factor efficiencies: an international comparison. Renew. Sustain. Energy Rev. 52, 1158–1171 (2015)CrossRefGoogle Scholar
  20. 20.
    Rashidi, K., Shabani, A., Saen, R.: Using data envelopment analysis for estimating energy saving and undesirable output abatement: a case study in the Organization for Economic Co-Operation and Development (OECD) countries. J. Clean. Prod. 105, 241–252 (2015)CrossRefGoogle Scholar
  21. 21.
    Robaina, M., Moutinho, V., Macedo, P.: A new frontier approach to model the eco-efficiency in European countries. J. Clean. Prod. 103, 562–573 (2015)Google Scholar
  22. 22.
    Apergis, N., Aye, G., Barros, C., Gupta, R., Wanke, P.: Energy efficiency of selected OECD countries: a slacks based model with undesirable outputs. Energy Econ. 51, 45–53 (2015)CrossRefGoogle Scholar
  23. 23.
    Woo, C., Chung, Y., Chun, D., Seo, H., Hong, S.: The static and dynamic environmental efficiency of renewable energy: a Malmquist index analysis of OECD countries. Renew. Sustain. Energy Rev. 47, 367–376 (2015)CrossRefGoogle Scholar
  24. 24.
    Madaleno, M., Moutinho, V., Robaina, M.: Economic and Environmental assessment: EU cross-country efficiency ranking analysis. Energy Proced. 106, 134–154 (2016)CrossRefGoogle Scholar
  25. 25.
    Gómez-Calvet, R., Conesa, D., Gómez-Calvet, A., Tortosa-Ausina, E.: On the dynamics of eco-efficiency performance in the European Union. Comput. Oper. Res. 66, 336–350 (2016)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Moutinho, V., Madaleno, M., Robaina, M.: The economic and environmental efficiency assessment in EU cross-country: evidence from DEA and quantile regression approach. Ecol. Indic 78, 85–97 (2017)CrossRefGoogle Scholar
  27. 27.
    Beltrán-Esteve, M., Picazo-Tadeo, A.: Assessing environmental performance in the European Union: Eco-innovation versus catching-up. Energ. Policy 104, 240–252 (2017)CrossRefGoogle Scholar
  28. 28.
    Duman, Y., Kasman, A.: Environmental technical efficiency in EU member and candidate countries: a parametric hyperbolic distance function approach. Energy 147, 297–307 (2018)CrossRefGoogle Scholar
  29. 29.
    Zhou, P., Ang, B., Poh, K.: A survey of data envelopment analysis in energy and environmental studies. Eur. J. Oper. Res. 189(1), 1–18 (2008)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Färe, R., Grosskopf, S., Tyteca, D.: An activity analysis model of the environmental performance of firms - application to fossil-fuel-fired electric utilities. Ecol. Econ. 18, 161–175 (1996)CrossRefGoogle Scholar
  31. 31.
    Färe, R., Grosskopf, S., Lovell, C., Pasurka, C.: Multilateral productivity comparisons when some outputs are undesirable: a nonparametric approach. Rev. Econ. Stat. 71, 90–98 (1989)CrossRefGoogle Scholar
  32. 32.
    Färe, R., Grosskopf, S.: Theory and application of directional distance functions. J. Prod. Anal. 13, 93–103 (2000)CrossRefGoogle Scholar
  33. 33.
    Charnes, A., Cooper, W., Rhodes, E.: Measuring efficiency of decision-making units. Eur. J. Oper. Res. 2(6), 429–444 (1978)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Luenberger, D.: Benefit functions and duality. J. Math. Econ. 21, 461–481 (1992)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Luenberger, D.: Microeconomic Theory. McGraw-Hill, New York (1995)Google Scholar
  36. 36.
    Skjaerseth, J., Wettestad, J.: EU Emissions Trading. Routledge, Taylor & Francis Group, London (2013)Google Scholar
  37. 37.
    European Commission. Climate strategies & targets. Accessed Feb 2018Google Scholar
  38. 38.
    Eurostat. Europe 2020 indicators climate change and energy (2017). Accessed Feb 2018Google Scholar
  39. 39.
    Skjaerseth, J.: Implementing EU climate and energy policies in Poland: policy feedback and reform. Environ. Polit. 27, 498–518 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Centre for Management and Industrial Engineering (CEGI/INESC TEC), Research Centre in Digitalization and Intelligent Robotics (CeDRI), Instituto Politécnico de BragançaBragançaPortugal
  2. 2.Research Centre in Digitalization and Intelligent Robotics (CeDRI), Instituto Politécnico de BragançaBragançaPortugal

Personalised recommendations