Advertisement

Dynamic Approaches to Solve the Smart Waste Collection Routing Problem

  • Carolina Soares de MoraisEmail author
  • Tânia Rodrigues Pereira Ramos
  • Ana Paula Barbosa-Póvoa
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 278)

Abstract

A Dynamic Inventory Routing Problem model embedded into a rolling horizon solution approach is developed, along this paper, to solve the Smart Waste Collection Routing Problem. This allows the definition of dynamic waste collection routes that explore the use of real-time information on the bins fill-level, over a medium-term horizon. Opposite to a published short-term approach, based on the solution of the Vehicle Routing Problem with Profits that maximize daily profits, the present approach leads to better results translated into higher operational profits. This evidence is shown through the comparison of the solution of both the short-term and the medium-term approaches in a set of small instances where different active rolling horizon intervals are tested. A large instance obtained from a real waste collection system case study is also studied, and the results confirm the conclusions obtained when solving smaller instances.

Keywords

Inventory routing problem Vehicle routing problem with profits Dynamic routes Sensors Waste collection 

Notes

Acknowledgements

This work was supported by the financial support of “Fundação para a Ciência e Tecnologia” (FCT - Portugal), through the research project MIT-EXPL/SUS/0132/2017.

References

  1. 1.
    Aksen, D., Kaya, O., Salman, F.S., Akca, Y.: Selective and periodic inventory routing problem for waste vegetable oil collection. Optim. Lett. 6, 1063–1080 (2012)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Anagnostopoulos, D., Kolomvatsos, K., Anagnostopoulos, C., Zaslavsky, A.: Assessing dynamic models for high-priority waste collection in smart cities. J. Syst. Softw. 110, 178–192 (2015)CrossRefGoogle Scholar
  3. 3.
    Anghinolfi, D., Paolucci, M., Robba, M., Taramasso, A.: A dynamic optimization model for solid waste recycling. Waste Manag. 33, 287–296 (2013)CrossRefGoogle Scholar
  4. 4.
    Aras, N., Aksen, D., Tekin, M.T.: Selective multi-depot vehicle routing problem with pricing. Transp. Res. Part C Emerg. Technol. 19, 866–884 (2011)CrossRefGoogle Scholar
  5. 5.
    Archetti, C., Speranza, M.G., Vigo, D.: Vehicle routing problems with profits. In: Toth, P., Vigo, D. (eds.) Vehicle Routing: Problems, Methods, and Application, 2nd edn. SIAM, Philadelphia (2014)Google Scholar
  6. 6.
    Baita, F., Ukovic, W., Pesenti, R., Favaretto, D.: Dynamic routing-and-inventory problems: a review. Transp. Res. Part A Police Pract. 32, 585–598 (1998)CrossRefGoogle Scholar
  7. 7.
    Coelho, L.C., Courdeau, J.F., Laporte, G.: Thirty years of inventory routing. Transp. Sci. 48(1), 1–19 (2013)CrossRefGoogle Scholar
  8. 8.
    Coelho, L.C., Courdeau, J.F., Laporte, G.: Heuristics for dynamic and stochastic inventory-routing. Comput. Oper. Res. 52, 55–67 (2014)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Ghiani, G., Lagana, D., Manni, E., Musmanno, R., Vigo, D.: Operations research in solid waste management: a survey of strategic and tactical issues. Comput. Oper. Res. 44, 22–32 (2014)CrossRefGoogle Scholar
  10. 10.
    Gutierrez, J.M., Jensen, M., Henius, M., Riaz, T.: Smart waste collection system based on location intelligence. Procedia Comput. Sci. 61, 120–127 (2015)CrossRefGoogle Scholar
  11. 11.
    Marquant, J.F., Evins, R., Carmeliet, J.: Reducing computation time with a rolling horizon approach applied to a MILP formulation on multiple urban energy hub system. Procedia Comput. Sci. 51, 2137–2146 (2015)CrossRefGoogle Scholar
  12. 12.
    Meira, W.H.T., Magatao, L., Relvas, S., Barbosa-Povoa, A.P., Neves, F., Arruda, L.V.R.: A matheuristic decomposition approach for the scheduling of a single-source and multiple destinations pipeline system. Eur. J. Oper. Res. (to appear) (2018)Google Scholar
  13. 13.
    Mes, M.: Using simulation to assess the opportunities of dynamic waste collection. In: Use Cases of Discrete Event Simulation, vol. 34, pp. 1564–1576. Springer (2012)Google Scholar
  14. 14.
    Mes, M., Schutten, M., Rivera, A.P.: Inventory routing for dynamic waste collection. Waste Manag. 34, 1564–1576 (2014)CrossRefGoogle Scholar
  15. 15.
    Ramos, T.R.P., Morais, C.S., Barbosa-Povoa, A.P.: The smart waste collection routing problem: alternative operational management approaches. Expert. Syst. Appl. 103, 146–158 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Carolina Soares de Morais
    • 1
    Email author
  • Tânia Rodrigues Pereira Ramos
    • 1
    • 2
  • Ana Paula Barbosa-Póvoa
    • 1
  1. 1.Centre for Management Studies, Instituto Superior Técnico (CEG-IST), Universidade de LisboaLisbonPortugal
  2. 2.Business Research Unit, ISCTE (BRU-ISCTE)Instituto Universitário de LisboaLisbonPortugal

Personalised recommendations