Advertisement

Literature Review

  • Laith Mohammad Qasim AbualigahEmail author
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 816)

Abstract

This chapter reviews the full explanation of the TD clustering technique, discusses the text document clustering problem (TDCP) and text feature selection problem (TFSP), shows more related works, and examines KHA and its application.

References

  1. Abd-Alsabour, N. (2014). A review on evolutionary feature selection. In 2014 European Modelling Symposium (EMS) (pp. 20–26).Google Scholar
  2. Abualigah, L. M., & Khader, A. T. (2017). Unsupervised text feature selection technique based on hybrid particle swarm optimization algorithm with genetic operators for the text clustering. The Journal of Supercomputing, 1–23.Google Scholar
  3. Abualigah, L. M., Khader, A. T., & Al-Betar, M. A. (2016a, July). Multi-objectives based text clustering technique using k-mean algorithm, 1–6.  https://doi.org/10.1109/CSIT.2016.7549464
  4. Abualigah, L. M., Khader, A. T., & Al-Betar, M. A. (2016b, July). Unsupervised feature selection technique based on genetic algorithm for improving the text clustering. In 7th International Conference on Computer Science and Information Technology (CSIT) (pp. 1–6).  https://doi.org/10.1109/CSIT.2016.7549453
  5. Abualigah, L. M., Khader, A. T., & Al-Betar, M. A. (2016c, July). Unsupervised feature selection technique based on harmony search algorithm for improving the text clustering. In 7th International Conference on Computer Science and Information Technology (CSIT) (pp. 1–6).  https://doi.org/10.1109/CSIT.2016.7549456
  6. Agarwal, P., & Mehta, S. (2015). Comparative analysis of nature inspired algorithms on data clustering. In 2015 IEEE International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN) (pp. 119–124).Google Scholar
  7. Aggarwal, C. C., & Zhai, C. (2012). A survey of text clustering algorithms. In Mining text data (pp. 77–128). Berlin: Springer.CrossRefGoogle Scholar
  8. Akter, R., & Chung, Y. (2013). An evolutionary approach for document clustering. IERI Procedia, 4, 370–375.CrossRefGoogle Scholar
  9. Alghamdi, H. M., Selamat, A., & Karim, N. S. A. (2014). Improved text clustering using k-mean bayesian vectoriser. Journal of Information & Knowledge Management, 13(03), 1450026.CrossRefGoogle Scholar
  10. Alikhani, A., Suratgar, A. A., Nouri, K., Nouredanesh, M., & Salimi, S. (2013). Optimal PID tuning based on krill herd optimization algorithm. In 2013 3rd International Conference on Control, Instrumentation and Automation (ICCIA) (pp. 11–15).Google Scholar
  11. Amiri, E., & Mahmoudi, S. (2016). Efficient protocol for data clustering by fuzzy cuckoo optimization algorithm. Applied Soft Computing, 41, 15–21.CrossRefGoogle Scholar
  12. Amudhavel, J., Kumarakrishnan, S., Gomathy, H., Jayabharathi, A., Malarvizhi, M., & Kumar, K. P. (2015a). An scalable bandwidth reduction and optimization in smart phone ad hoc network (span) using krill herd algorithm. In Proceedings of the 2015 International Conference on Advanced Research in Computer Science Engineering & Technology (ICARCSET 2015) (p. 26).Google Scholar
  13. Amudhavel, J., Sathian, D., Raghav, R., Pasupathi, L., Baskaran, R., & Dhavachelvan, P. (2015b). A fault tolerant distributed self organization in peer to peer (p2p) using krill herd optimization. In Proceedings of the 2015 International Conference on Advanced Research in Computer Science Engineering & Technology (ICARCSET 2015) (p. 23).Google Scholar
  14. Armano, G., & Farmani, M. R. (2016). Multiobjective clustering analysis using particle swarm optimization. Expert Systems with Applications, 55, 184–193.CrossRefGoogle Scholar
  15. Ayala, H. V. H., Segundo, E. H. V., Mariani, V. C., & dos Santos Coelho, L. (2012). Multiobjective Krill Herd algorithm for electromagnetic optimization. Evolutionary Computation, 6(2), 182–197.Google Scholar
  16. Bharti, K. K., & Singh, P. (2014a). Chaotic artificial bee colony for text clustering. In 2014 Fourth International Conference of Emerging Applications of Information Technology (EAIT) (pp. 337–343).Google Scholar
  17. Bharti, K. K., & Singh, P. K. (2014b). A three-stage unsupervised dimension reduction method for text clustering. Journal of Computational Science, 5(2), 156–169.CrossRefGoogle Scholar
  18. Bharti, K. K., & Singh, P. K. (2015a). Chaotic gradient artificial bee colony for text clustering. Soft Computing, 25, 1–14.Google Scholar
  19. Bharti, K. K., & Singh, P. K. (2015b). Hybrid dimension reduction by integrating feature selection with feature extraction method for text clustering. Expert Systems with Applications, 42(6), 3105–3114.CrossRefGoogle Scholar
  20. Bharti, K. K., & Singh, P. K. (2016a). Chaotic gradient artificial bee colony for text clustering. Soft Computing, 20(3), 1113–1126.CrossRefGoogle Scholar
  21. Bharti, K. K., & Singh, P. K. (2016b). Opposition chaotic fitness mutation based adaptive inertia weight BPSO for feature selection in text clustering. Applied Soft Computing, 43, 20–34.CrossRefGoogle Scholar
  22. Blum, C., & Roli, A. (2003). Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM Computing Surveys, 35(3), 268–308.CrossRefGoogle Scholar
  23. Bolaji, A. L., Al-Betar, M. A., Awadallah, M. A., Khader, A. T., & Abualigah, L. M. (2016). A comprehensive review: krill herd algorithm (KH) and its applications. Applied Soft Computing, 49, 437–446.CrossRefGoogle Scholar
  24. Brisset, S., & Brochet, P. (2005). Analytical model for the optimal design of a brushless DC wheel motor. COMPEL-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 24(3), 829–848.zbMATHCrossRefGoogle Scholar
  25. Cui, X., Potok, T. E., & Palathingal, P. (2005). Document clustering using particle swarm optimization. In Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005 (pp. 185–191).Google Scholar
  26. Cunningham, P. (2008). Dimension reduction. Machine learning techniques for multimedia (pp. 91–112). Berlin: Springer.Google Scholar
  27. De Vries, C. M. (2014). Document clustering algorithms, representations and evaluation for information retrieval.Google Scholar
  28. Deepa, M., Revathy, P., & Student, P. (2012). Validation of document clustering based on purity and entropy measures. International Journal of Advanced Research in Computer and Communication Engineering, 1(3), 147–152.Google Scholar
  29. Devi, S. S., Shanmugam, A., & Prabha, E. D. (2015). A proficient method for text clustering using harmony search method.Google Scholar
  30. Diao, R. (2014). Feature selection with harmony search and its applications (Unpublished doctoral dissertation). Aberystwyth University.Google Scholar
  31. Dorigo, M., & Di Caro, G. (1999). Ant colony optimization: a new meta-heuristic. In Proceedings of the 1999 Congress on Evolutionary Computation, 1999. CEC 99 (Vol. 2, pp. 1470–1477).Google Scholar
  32. Eberhart, R. C., Kennedy, J., et al. (1995). A new optimizer using particle swarm theory. In Proceedings of the Sixth International Symposium on Micro Machine and Human Science (Vol. 1, pp. 39–43).Google Scholar
  33. Fan, Z., Chen, S., Zha, L., & Yang, J. (2016). A text clustering approach of Chinese news based on neural network language model. International Journal of Parallel Programming, 44(1), 198–206.CrossRefGoogle Scholar
  34. Fattahi, E., Bidar, M., & Kanan, H. R. (2014). Fuzzy krill herd optimization algorithm. In 2014 First International Conference on Networks & Soft Computing (ICNSC) (pp. 423–426).Google Scholar
  35. Fodor, I. K. (2002). A survey of dimension reduction techniques. Technical Report UCRL-ID-148494, Lawrence Livermore National Laboratory.Google Scholar
  36. Forsati, R., Mahdavi, M., Shamsfard, M., & Meybodi, M. R. (2013). Efficient stochastic algorithms for document clustering. Information Sciences, 220, 269–291.MathSciNetCrossRefGoogle Scholar
  37. Forsati, R., Keikha, A., & Shamsfard, M. (2015). An improved bee colony optimization algorithm with an application to document clustering. Neurocomputing, 159, 9–26.CrossRefGoogle Scholar
  38. Geem, Z. W., Kim, J. H., & Loganathan, G. (2001). A new heuristic optimization algorithm: Harmony search. Simulation, 76(2), 60–68.CrossRefGoogle Scholar
  39. Ghanem, O., & Alhanjouri, M. (2014). Evaluating the effect of preprocessing in Arabic documents clustering (Unpublished doctoral dissertation). Master’s thesis, Computer Engineering Department, Islamic University of Gaza, Palestine.Google Scholar
  40. Gomaa, W. H., & Fahmy, A. A. (2013). A survey of text similarity approaches. International Journal of Computer Applications, 68(13), 0975–8887.Google Scholar
  41. Guo, L., Wang, G.-G., Gandomi, A. H., Alavi, A. H., & Duan, H. (2014). A new improved krill herd algorithm for global numerical optimization. Neurocomputing, 138, 392–402.CrossRefGoogle Scholar
  42. Hafez, A. I., Hassanien, A. E., Zawbaa, H. M., & Emary, E. (2015). Hybrid monkey algorithm with krill herd algorithm optimization for feature selection. In 2015 11th International Computer Engineering Conference (ICENCO) (pp. 273–277).Google Scholar
  43. Handl, J., & Meyer, B. (2007). Ant-based and swarm-based clustering. Swarm Intelligence, 1(2), 95–113.CrossRefGoogle Scholar
  44. Hassanzadeh, T., & Meybodi, M. R. (2012). A new hybrid approach for data clustering using firefly algorithm and k-means. In 2012 16th CSI International Symposium on Artificial Intelligence and Signal Processing (AISP) (pp. 007–011).Google Scholar
  45. Holland, J. H. (1975). Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. University of Michigan Press, Ann Arbor.Google Scholar
  46. Hong, S.-S., Lee, W., & Han, M.-M. (2015). The feature selection method based on genetic algorithm for efficient of text clustering and text classification. International Journal of Advances in Soft Computing & Its Applications, 7(1), 22–40.Google Scholar
  47. Jaganathan, P., & Jaiganesh, S. (2013). An improved k-means algorithm combined with particle swarm optimization approach for efficient web document clustering. In 2013 International Conference on Green Computing, Communication and Conservation of Energy (ICGCE) (pp. 772–776).Google Scholar
  48. Jajoo, P. (2008). Document clustering (Unpublished doctoral dissertation). Indian Institute of Technology Kharagpur.Google Scholar
  49. Jensi, R., & Jiji, G. W. (2016). An improved krill herd algorithm with global exploration capability for solving numerical function optimization problems and its application to data clustering. Applied Soft Computing, 46, 230–245.CrossRefGoogle Scholar
  50. Kadhim, A. I., Cheah, Y., Ahamed, N. H., Salman, L. A., et al. (2014). Feature extraction for co-occurrence-based cosine similarity score of text documents. In 2014 IEEE Student Conference on Research and Development (SCOReD) (pp. 1–4).Google Scholar
  51. Karaa, W. B. A., Ashour, A. S., Sassi, D. B., Roy, P., Kausar, N., & Dey, N. (2016). Medline text mining: An enhancement genetic algorithm based approach for document clustering. Applications of Intelligent Optimization in Biology and Medicine (pp. 267–287). Berlin: Springer.Google Scholar
  52. Karaboga, D., & Basturk, B. (2007). A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. Journal of Global Optimization, 39(3), 459–471.MathSciNetzbMATHCrossRefGoogle Scholar
  53. Karaboga, D., Gorkemli, B., Ozturk, C., & Karaboga, N. (2014). A comprehensive survey: artificial bee colony (ABC) algorithm and applications. Artificial Intelligence Review, 42(1), 21–57.CrossRefGoogle Scholar
  54. Kowalski, P. A., & Łukasik, S. (2015). Training neural networks with krill herd algorithm. Neural Processing Letters, 1–13.Google Scholar
  55. Lari, N. S., & Abadeh, M. S. (2014a). A new approach to find optimum architecture of ANN and tuning it’s weights using krill-herd algorithm. In 2014 International Congress on Technology, Communication and Knowledge (ICTCK) (pp. 1–7).Google Scholar
  56. Lari, N. S., & Abadeh, M. S. (2014b). Training artificial neural network by krill-herd algorithm. In 2014 IEEE 7th Joint International Information Technology and Artificial Intelligence Conference (ITAIC) (pp. 63–67).Google Scholar
  57. Li, Y., Luo, C., & Chung, S. M. (2008). Text clustering with feature selection by using statistical data. IEEE Transactions on Knowledge and Data Engineering, 20(5), 641–652.CrossRefGoogle Scholar
  58. Li, J., Tang, Y., Hua, C., & Guan, X. (2014). An improved Krill Herd algorithm: krill herd with linear decreasing step. Applied Mathematics and Computation, 234, 356–367.MathSciNetzbMATHCrossRefGoogle Scholar
  59. Li, Z.-Y., Yi, J.-H., & Wang, G.-G. (2015). A new swarm intelligence approach for clustering based on krill herd with elitism strategy. Algorithms, 8(4), 951–964.MathSciNetzbMATHCrossRefGoogle Scholar
  60. Liao, H., Xu, Z., & Zeng, X.-J. (2014). Distance and similarity measures for hesitant fuzzy linguistic term sets and their application in multi-criteria decision making. Information Sciences, 271, 125–142.MathSciNetzbMATHCrossRefGoogle Scholar
  61. Lin, Y.-S., Jiang, J.-Y., & Lee, S.-J. (2014). A similarity measure for text classification and clustering. IEEE Transactions on Knowledge and Data Engineering, 26(7), 1575–1590.CrossRefGoogle Scholar
  62. Lin, K.-C., Zhang, K.-Y., Huang, Y.-H., Hung, J. C., & Yen, N. (2016). Feature selection based on an improved cat swarm optimization algorithm for big data classification. The Journal of Supercomputing, 72(8), 1–12.CrossRefGoogle Scholar
  63. Liu, F., & Xiong, L. (2011). Survey on text clustering algorithm. In 2011 IEEE 2nd International Conference on Software Engineering and Service Science (pp. 901–904).Google Scholar
  64. Ljp, P. E., Van Den, H., & H.,. (2007). Dimensionality reduction: A comparative review. Rrep: Tech.Google Scholar
  65. Lu, Y., Liang, M., Ye, Z., & Cao, L. (2015). Improved particle swarm optimization algorithm and its application in text feature selection. Applied Soft Computing, 35, 629–636.CrossRefGoogle Scholar
  66. Lv, Y., & Zhai, C. (2011). Lower-bounding term frequency normalization. In Proceedings of the 20th ACM International Conference on Information and Knowledge Management (pp. 7–16).Google Scholar
  67. Machnik, Ł. (2007). A document clustering method based on ant algorithms. Task Quarterly, 11(1–2), 87–102.Google Scholar
  68. MacQueen, J., et al. (1967). Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability (Vol. 1, pp. 281–297).Google Scholar
  69. Maitra, R., & Ramler, I. P. (2012). A k-mean-directions algorithm for fast clustering of data on the sphere. Journal of Computational and Graphical Statistics, 19(2), 377–396.MathSciNetCrossRefGoogle Scholar
  70. Manikandan, P., & Selvarajan, S. (2014). Data clustering using cuckoo search algorithm (CSA). In Proceedings of the Second International Conference on Soft Computing for Problem Solving (SocProS 2012), December 28–30, 2012 (pp. 1275–1283).Google Scholar
  71. Moayedikia, A., Jensen, R., Wiil, U. K., & Forsati, R. (2015). Weighted bee colony algorithm for discrete optimization problems with application to feature selection. Engineering Applications of Artificial Intelligence, 44, 153–167.CrossRefGoogle Scholar
  72. Mohammadi, A., Abadeh, M. S., & Keshavarz, H. (2014a). Breast cancer detection using a multi-objective binary Krill Herd algorithm. In 2014 21th Iranian Conference on Biomedical Engineering (ICBME) (pp. 128–133).Google Scholar
  73. Mohammed, A. J., Yusof, Y., & Husni, H. (2014b). Weight-based firefly algorithm for document clustering. In Proceedings of the First International Conference on Advanced Data and Information Engineering (DaEng-2013) (pp. 259–266).Google Scholar
  74. Mohammed, A. J., Yusof, Y., & Husni, H. (2016). GF-CLUST: A nature-inspired algorithm for automatic text clustering. Journal of Information & Communication Technology, 15(1).Google Scholar
  75. Moh’d Alia, O., Al-Betar, M. A., Mandava, R., & Khader, A. T. (2011). Data clustering using harmony search algorithm. In International Conference on Swarm, Evolutionary, and Memetic Computing (pp. 79–88).Google Scholar
  76. Murugesan, A. K., & Zhang, B. J. (2011). A new term weighting scheme for document clustering. In 7th International Conference Data Min. (DMIN 2011-WORLDCOMP 2011), Las Vegas, Nevada, USA.Google Scholar
  77. Nanda, S. J., & Panda, G. (2014). A survey on nature inspired metaheuristic algorithms for partitional clustering. Swarm and Evolutionary Computation, 16, 1–18.CrossRefGoogle Scholar
  78. Nebu, C. M., & Joseph, S. (2016). A hybrid dimension reduction technique for document clustering. Innovations in bio-inspired computing and applications (pp. 403–416). Berlin: Springer.Google Scholar
  79. Paik, J. H. (2013). A novel TF-IDF weighting scheme for effective ranking. In Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 343–352).Google Scholar
  80. Prakash, B., Hanumanthappa, M., & Mamatha, M. (2014). Cluster based term weighting model for web document clustering. In Proceedings of the Third International Conference on Soft Computing for Problem Solving (pp. 815–822).Google Scholar
  81. Qian, G., Sural, S., Gu, Y., & Pramanik, S. (2004). Similarity between Euclidean and cosine angle distance for nearest neighbor queries. In Proceedings of the 2004 ACM Symposium on Applied Computing (pp. 1232–1237).Google Scholar
  82. Rajeswari, M. R., & GunaSekaran, G. (2015). Improved ant colony optimization towards robust ensemble co-clustering algorithm (IACO-RECCA) for enzyme clustering. Lateral, 4(4).Google Scholar
  83. Rodrigues, D., Pereira, L. A., Papa, J. P., & Weber, S. A. (2014). A binary krill herd approach for feature selection. In 2014 22nd International Conference on Pattern Recognition (ICPR) (pp. 1407–1412).Google Scholar
  84. Roul, R. K., Varshneya, S., Kalra, A., & Sahay, S. K. (2015). A novel modified apriori approach for web document clustering. Computational intelligence in data mining-volume 3 (Vol. 3, pp. 159–171). Berlin: Springer.Google Scholar
  85. Saida, I. B., Nadjet, K., & Omar, B. (2014). A new algorithm for data clustering based on cuckoo search optimization. Genetic and evolutionary computing (pp. 55–64). Berlin: Springer.zbMATHGoogle Scholar
  86. Senthilnath, J., Omkar, S., & Mani, V. (2011). Clustering using firefly algorithm: Performance study. Swarm and Evolutionary Computation, 1(3), 164–171.CrossRefGoogle Scholar
  87. Shafiei, M., Wang, S., Zhang, R., Milios, E., Tang, B., Tougas, J., et al. (2006). A systematic study of document representation and dimension reduction for text clustering.Google Scholar
  88. Shafiei, M., Wang, S., Zhang, R., Milios, E., Tang, B., Tougas, J., & Spiteri, R. (2007). Document representation and dimension reduction for text clustering. In 2007 IEEE 23rd International Conference on Data Engineering Workshop (pp. 770–779).Google Scholar
  89. Shah, F. P., & Patel, V. (2016). A review on feature selection and feature extraction for text classification. In International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET) (pp. 2264–2268).Google Scholar
  90. Shah, N., & Mahajan, S. (2012). Document clustering: A detailed review. Int’l Journal of Applied Information Systems, 4(5), 30–38.CrossRefGoogle Scholar
  91. Shamsinejadbabki, P., & Saraee, M. (2012). A new unsupervised feature selection method for text clustering based on genetic algorithms. Journal of Intelligent Information Systems, 38(3), 669–684.CrossRefGoogle Scholar
  92. Singh, P., & Sharma, M. (2013). Text document clustering and similarity measures. Department of Computer Science & Engineering.Google Scholar
  93. Singhal, A., Buckley, C., & Mitra, M. (2017). Pivoted document length normalization. In ACM SIGIR Forum (Vol. 51, pp. 176–184).CrossRefGoogle Scholar
  94. Song, W., Li, C. H., & Park, S. C. (2009). Genetic algorithm for text clustering using ontology and evaluating the validity of various semantic similarity measures. Expert Systems with Applications, 36(5), 9095–9104.CrossRefGoogle Scholar
  95. Song, W., Ma, W., & Qiao, Y. (2014a). Particle swarm optimization algorithm with environmental factors for clustering analysis. Soft Computing, 1–11.Google Scholar
  96. Song, W., Liang, J. Z., & Park, S. C. (2014b). Fuzzy control GA with a novel hybrid semantic similarity strategy for text clustering. Information Sciences, 273, 156–170.CrossRefGoogle Scholar
  97. Song, W., Qiao, Y., Park, S. C., & Qian, X. (2015). A hybrid evolutionary computation approach with its application for optimizing text document clustering. Expert Systems with Applications, 42(5), 2517–2524.CrossRefGoogle Scholar
  98. Sorzano, C. O. S., Vargas, J., & Montano, A. P. (2014). A survey of dimensionality reduction techniques. arXiv:1403.2877.
  99. Sultana, S., & Roy, P. K. (2015). Oppositional Krill Herd algorithm for optimal location of distributed generator in radial distribution system. International Journal of Electrical Power & Energy Systems, 73, 182–191.CrossRefGoogle Scholar
  100. Sultana, S., & Roy, P. K. (2016). Oppositional Krill Herd algorithm for optimal location of capacitor with reconfiguration in radial distribution system. International Journal of Electrical Power & Energy Systems, 74, 78–90.CrossRefGoogle Scholar
  101. Sur, C., & Shukla, A. (2014). Discrete krill herd algorithm-a bio-inspired metaheuristics for graph based network route optimization. Distributed computing and internet technology (pp. 152–163). Berlin: Springer.CrossRefGoogle Scholar
  102. Tang, B., Shepherd, M., Milios, E., & Heywood, M. I. (2005). Comparing and combining dimension reduction techniques for efficient text clustering. In Proceeding of SIAM International Workshop on Feature Selection for Data Mining (pp. 17–26).Google Scholar
  103. Tsai, C.-F., & Eberle, W., & Chu, C.-Y. (2013). Genetic algorithms in feature and instance selection. Knowledge-Based Systems, 39, 240–247.CrossRefGoogle Scholar
  104. Tunali, V., Bilgin, T., & Camurcu, A. (2016). An improved clustering algorithm for text mining: Multi-cluster spherical k-means. International Arab Journal of Information Technology (IAJIT), 13(1), 12–19.Google Scholar
  105. Uǧuz, H. (2011). A two-stage feature selection method for text categorization by using information gain, principal component analysis and genetic algorithm. Knowledge- Based Systems, 24(7), 1024–1032.CrossRefGoogle Scholar
  106. van der MLJP, P. E., & van den HH, J. (2009). Dimensionality reduction: A comparative review (Technical Report). Tilburg, Netherlands: Tilburg Centre for Creative Computing, Tilburg University, Technical Report: 2009-005.Google Scholar
  107. Vergara, J. R., & Estévez, P. A. (2014). A review of feature selection methods based on mutual information. Neural Computing and Applications, 24(1), 175–186.CrossRefGoogle Scholar
  108. Wang, G.-G., Deb, S., & Thampi, S. M. (2016). A discrete krill herd method with multilayer coding strategy for flexible job-shop scheduling problem. Intelligent systems technologies and applications (pp. 201–215). Berlin: Springer.Google Scholar
  109. Wang, G., Guo, L., Gandomi, A. H., Cao, L., Alavi, A. H., Duan, H., et al. (2013). Lévy-flight krill herd algorithm. Mathematical Problems in Engineering, Article ID 682073, 14 p.  https://doi.org/10.1155/2013/682073,2013.
  110. Wang, G.-G., Hossein Gandomi, A., & Hossein Alavi, A. (2013). A chaotic particle- swarm krill herd algorithm for global numerical optimization. Kybernetes, 42(6), 962–978.MathSciNetzbMATHCrossRefGoogle Scholar
  111. Wang, G.-G., Gandomi, A. H., & Alavi, A. H. (2014a). An effective krill herd algorithm with migration operator in biogeography-based optimization. Applied Mathematical Modelling, 38(9), 2454–2462.MathSciNetzbMATHCrossRefGoogle Scholar
  112. Wang, G.-G., Guo, L., Gandomi, A. H., Hao, G.-S., & Wang, H. (2014b). Chaotic krill herd algorithm. Information Sciences, 274, 17–34.MathSciNetCrossRefGoogle Scholar
  113. Wang, Y., Liu, Y., Feng, L., & Zhu, X. (2015). Novel feature selection method based on harmony search for email classification. Knowledge-Based Systems, 73, 311–323.CrossRefGoogle Scholar
  114. Wang, S., Lu, J., Gu, X., Du, H., & Yang, J. (2016). Semi-supervised linear discriminant analysis for dimension reduction and classification. Pattern Recognition, 57, 179–189.zbMATHCrossRefGoogle Scholar
  115. Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1(1), 67–82.CrossRefGoogle Scholar
  116. Wu, G., Lin, H., Fu, E., & Wang, L. (2015, October). An improved k-means algorithm for document clustering. In 2015 International Conference on Computer Science and Mechanical Automation (CSMA) (pp. 65–69).  https://doi.org/10.1109/CSMA.2015.20
  117. Yang, Y., & Pedersen, J. O. (1997). A comparative study on feature selection in text categorization. In Icml (Vol. 97, pp. 412–420).Google Scholar
  118. Yang, X.-S., & Deb, S. (2010). Engineering optimisation by cuckoo search. International Journal of Mathematical Modelling and Numerical Optimisation, 1(4), 330–343.zbMATHCrossRefGoogle Scholar
  119. Yang, X.-S., & He, X. (2013). Firefly algorithm: Recent advances and applications. International Journal of Swarm Intelligence, 1(1), 36–50.CrossRefGoogle Scholar
  120. Yao, F., Coquery, J., & Lê Cao, K.-A. (2012b). Independent principal component analysis for biologically meaningful dimension reduction of large biological data sets. BMC Bioinformatics, 13(1), 1.CrossRefGoogle Scholar
  121. Younesi, A., & Tohidi, S. (2015). Design of a sensorless controller for PMSM using krill herd algorithm. In 2015 6th Power Electronics, Drives Systems & Technologies Conference (PEDSTC) (pp. 418–423).Google Scholar
  122. Zaw, M. M., & Mon, E. E. (2015). Web document clustering by using PSO-based cuckoo search clustering algorithm. Recent advances in swarm intelligence and evolutionary computation (pp. 263–281). Berlin: Springer.Google Scholar
  123. Zhang, Y., Wang, S., Phillips, P., & Ji, G. (2014). Binary PSO with mutation operator for feature selection using decision tree applied to spam detection. Knowledge-Based Systems, 64, 22–31.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Universiti Sains MalaysiaPenangMalaysia

Personalised recommendations