Literature Review of Glass-Ceramic and Willemite Production from Waste Materials

  • Gholamreza Vahedi Sarrigani
  • Iraj Sadegh Amiri
Part of the SpringerBriefs in Electrical and Computer Engineering book series (BRIEFSELECTRIC)


The first attempt to produce a glass ceramic from waste material was reported as early as the 1960s and involved use of several types of slag of ferrous and nonferrous metallurgy, ash, and waste from the mining and chemical industries. Willemite (Zn2SiO4), which is a good host for rare earths to be used in telecommunications, has been produced by different methods from pure materials. However, there is a lack of research on preparation of willemite using waste materials. To date, most research has been carried out on soda lime silicate (SLS) glass doped with different ingredients and rare earths, but little research has been carried out on willemite-based glass ceramics prepared using waste material and doped with erbium oxide (Er2O3). However, use of waste materials, such as SLS glass, as a main source for producing silicate will be economical, inexpensive, and helpful for reducing the aggregation of waste materials in landfills. The main objective of this study is to determine the effects of addition of erbium oxide (Er2O3) on the physical and optical properties of willemite-based glass ceramic sintered at different temperatures.


Glass ceramic Willemite (Zn2SiO4Soda lime silicate (SLS) Erbium oxide (Er2O3


  1. 1.
    A.R. Boccaccini, M. Bücker, J. Bossert, Glass and glass-ceramics from coal fly ash and waste glass. Tile Brick Int. 12, 515–518 (1996)Google Scholar
  2. 2.
    M. Erol, S. Küçükbayrak, A. Ersoy-Meriçboyu, M.L. Öveçoğlu, Crystallization behaviour of glasses produced from fly ash. J. Eur. Ceram. Soc. 21(16), 2835–2841 (2001)CrossRefGoogle Scholar
  3. 3.
    S. Kumar, K.K. Singh, P. Ramachandrarao, Synthesis of cordierite from fly ash and its refractory properties. J. Mater. Sci. Lett. 19(14), 1263–1265 (2000)CrossRefGoogle Scholar
  4. 4.
    R. Siddique, Wood ash, in Waste Materials and By-Products in Concrete, (Springer, London, 2008), pp. 303–321CrossRefGoogle Scholar
  5. 5.
    A. Karamanov, P. Pisciella, C. Cantalini, M. Pelino, Influence of Fe3+/Fe2+ ratio on the crystallisation of iron-rich glasses made with industrial wastes. J. Am. Ceram. Soc. 83, 3153–3157 (2000)CrossRefGoogle Scholar
  6. 6.
    L. Montanaro, N. Bianchini, J.M. Rincon, M. Romero, Sintering behaviour of pressed red mud wastes from zinc hydrometallurgy. Ceram. Int. 27(1), 29–37 (2001)CrossRefGoogle Scholar
  7. 7.
    E. Fidancevska, B. Mangutova, D. Milosevski, M. Milosevski, J. Bossert, Obtaining of dense and highly porous ceramic materials from metallurgical slag. Sci. Sinter. 35, 85–91 (2003)CrossRefGoogle Scholar
  8. 8.
    G.A. Khater, The use of Saudi slag for the production of glass-ceramic materials. Ceram. Int. 28(1), 59–67 (2002)CrossRefGoogle Scholar
  9. 9.
    F. Andreola, L. Barbieri, A. Corradi, I. Lancellotti, New marketable products from inorganic residues. Am. Ceram. Soc. Bull. 3, 9401–9408 (2004)Google Scholar
  10. 10.
    L. Barbieri, A. Corradi, I. Lancellotti, Thermal and chemical behaviour of different glasses containing steel fly ash and their transformation into glass-ceramics. J. Eur. Ceram. Soc. 22(11), 1759–1765 (2002)CrossRefGoogle Scholar
  11. 11.
    H.S. Kim, J.M. Kim, T. Oshikawa, K. Ikeda, Production and properties of glass-ceramics from incinerator fly ash. Mater. Sci. Forum 439, 180–185 (2003)CrossRefGoogle Scholar
  12. 12.
    J. Kim, H. Kim, Glass-ceramic produced from a municipal waste incinerator fly ash with high Cl content. J. Eur. Ceram. Soc. 24(8), 2373–2382 (2004)CrossRefGoogle Scholar
  13. 13.
    L. Stoch, Homogeneity and crystallisation of vitrified municipal waste incinerator ashes. Soc. Glass Technol. 45, 71–73 (2004)Google Scholar
  14. 14.
    P. Zhang, J. Yan, Mossbauer and infrared spectroscopy investigation on glass-ceramics using red mud. Z. Metallk. 91, 764–768 (2000)Google Scholar
  15. 15.
    M.M. Sokolova, V.S. Perunova, V.V. Sepanov, N.V. Kozlov, A glass ceramic material based on the waste from lamp production. Glas. Ceram. 43, 133–135 (1986)CrossRefGoogle Scholar
  16. 16.
    Z. Gao, C.H. Drummond III, Thermal analysis of nucleation and growth of crystalline phases in vitrified industrial wastes. J. Am. Ceram. Soc. 82, 561–565 (1999)CrossRefGoogle Scholar
  17. 17.
    W. Holand, G. Beall, Thermal expansion properties of a spodumene-willemite glass ceramic, in Glass-Ceramic Technology, (The American Ceramic Society, Westerville, 2002)Google Scholar
  18. 18.
    E. Bernardo, R. Castellan, S. Hreglich, Sintered glass-ceramics from mixtures of wastes. Ceram. Int. 33(1), 27–33 (2007)CrossRefGoogle Scholar
  19. 19.
    R.D. Rawlings, J.P. Wu, A.R. Boccaccini, Glass-ceramics: their production from wastes-a review. J. Mater. Sci. 41(3), 733–761 (2006)CrossRefGoogle Scholar
  20. 20.
    M.W. Davies, B. Kerrison, W.E. Gross, W.J. Robson, D.F. Wichell, Slagceram: a glass-ceramic from blast-furnace slag. J. Iron Steel Inst. 208, 348–370 (1970)Google Scholar
  21. 21.
    A.A. Francis, A.R. Boccaccini, R.D. Rawlings, Production of glass-ceramics from coal ash and waste glass mixtures. Key Eng. Mater. 206-213, 2049–2052 (2002)CrossRefGoogle Scholar
  22. 22.
    A.A. Francis, R.D. Rawlings, R. Sweeney, A.R. Boccaccini, Crystallization kinetic of glass particles prepared from a mixture of coal ash and soda-lime cullet glass. J. Non-Cryst. Solids 333(2), 187–193 (2004)CrossRefGoogle Scholar
  23. 23.
    L. Barbieri, A. Corradi, I. Lancellotti, G.C. Pellacani, Sintering and crystallisation behaviour of glass frits made from silicate waste. Glass Technol. 44, 184–190 (2003)Google Scholar
  24. 24.
    E. Bernardo, M. Varrasso, F. Cadamuro, S. Hreglich, Vitrification of wastes and preparation of chemically stable sintered glass-ceramic products. J. Non-Cryst. Solids 352(38–39), 4017–4023 (2006)CrossRefGoogle Scholar
  25. 25.
    A. Karamanov, Granite like materials from hazardous wastes obtained by sinter crystallisation of glass frits. Adv. Appl. Ceram. 108, 14–21 (2009)CrossRefGoogle Scholar
  26. 26.
    N. Marinoni, D. D’Alessio, V. Diella, A. Pavese, F. Francescon, Effects of soda–lime–silica waste glass on mullite formation kinetics and micro-structures development in vitreous ceramics. J. Environ. Manag. 124, 100–107 (2013)CrossRefGoogle Scholar
  27. 27.
    S.N. Salama, S.M. Salman, H. Darwish, The effect of nucleation catalysts on crystallization characteristics of aluminosilicate glasses. Ceramics-Silikáty 46, 15–23 (2002)Google Scholar
  28. 28.
    S.R. Scholes, Modern Glass Practice (CBI Publishing Company, Boston, 1975), pp. 1–493Google Scholar
  29. 29.
    T. Toya, Y. Kameshima, A. Yasumori, K. Okada, Preparation and properties of glass-ceramics from wastes (Kira) of silica sand and kaolin clay refining. J. Eur. Ceram. Soc. 24(8), 2367–2372 (2004)CrossRefGoogle Scholar
  30. 30.
    M. Braun, Z.D. Geolog, Thermal and chemical methods for producing zinc silicate (willemite): A review. Gesellschaft 9, 354–370 (1857)Google Scholar
  31. 31.
    M. Le’vy, M. Annales, Dont l’auteur est très ... un silicate de zinc nouvellement découvert à la Vieille-Montagne, célèbre mine de zinc, Paris. 4e`me se´rie 4, 507–520 (1843)Google Scholar
  32. 32.
    J. Schneider, M. Boni, C. Laukamp, T. Bechstädt, V. Petzel, Willemite (Zn2SiO4) as a possible Rb–Sr geochronometer for dating nonsulfide Zn–Pb mineralization: examples from the Otavi Mountainland (Namibia). Ore Geol. Rev. 33(2), 152–167 (2008)CrossRefGoogle Scholar
  33. 33.
    M. Boni, D. Large, Willemite in the Belgian non-sulphide deposits: a fluid inclusion study. Econ. Geol. 98, 715–729 (2003)CrossRefGoogle Scholar
  34. 34.
    P. Bowen, C. Carry, From powders to sintered pieces: forming, transformations and sintering of nanostructured ceramic oxides. Powder Technol. 128(2–3), 248–255 (2002)CrossRefGoogle Scholar
  35. 35.
    V. Coppola, M. Boni, H.A. Gilg, G. Balassone, L. Dejonghe, The “calamine” nonsulfide Zn–Pb deposits of Belgium: petrographical, mineralogical and geochemical characterization. Ore Geol. Rev. 33(2), 187–210 (2008)CrossRefGoogle Scholar
  36. 36.
    M.W. Hitzman, N.A. Reynolds, D.F. Sangster, C.R. Allen, C.E. Carman, Preparation and characterizations of green phosphors. Econ. Geol. 98, 685–714 (2003)CrossRefGoogle Scholar
  37. 37.
    F.H. Pough, Production and properties of zinc silicate mineral. Am. Mineral. 26, 92–102 (1941)Google Scholar
  38. 38.
    C. Palache, T. Feldmann, J. Stel, C.R. Ronda, P.J. Schmidt, Sintering effects on mechanical properties of glass-reinforced zinc silicate. Am. Mineral. 13, 330–333 (1928)Google Scholar
  39. 39.
    C. Feldmann, T. Justel, C.R. Ronda, P.J. Schmidt, Tripolyphosphate as precursor for REPO(4):Eu (3+) (RE = Y, La, Gd) by a polymeric method. Adv. Funct. Mater. 13, 511–516 (2003)CrossRefGoogle Scholar
  40. 40.
    D.E. Harrison, Preparation and characterizations of Zn2:Mn phosphors. J. Electrochem. Soc. 107, 210–217 (1960)CrossRefGoogle Scholar
  41. 41.
    H.W. Leverenz, An Introduction to Luminescence of Solids (Wiley, New York, 1950), pp. 399–401Google Scholar
  42. 42.
    T. Minami, Erbium-doped glasses for fiber amplifiers. Solid State Electron. 47, 2237–2243 (2003)CrossRefGoogle Scholar
  43. 43.
    C.R. Ronda, Characterisation of a glass and a glass-ceramic obtained from municipal incinerator ash. J. Lumin. 72-74, 49–54 (1997)CrossRefGoogle Scholar
  44. 44.
    H. Liang, Q. Zeng, Z. Tian, H. Lin, Q. Su, G. Zhang, Y. Fu, Intense emission of Ca5 ( PO4 ) 3F : Tb3 + under VUV excitation and its potential application in PDPs. J. Electrochem. Soc. 154, J177–J180 (2007)CrossRefGoogle Scholar
  45. 45.
    S. Zhang, Structure and luminescence properties of Mn-doped Zn2SiO4 prepared with extracted mesoporous silica. Mater. Res. Bull. 46(6), 791–795 (2006)Google Scholar
  46. 46.
    E.N. Bunting, Phase equilibria in the system SiO2-ZnO. Bur. Standards J. Res 4, 131–136 (1930)CrossRefGoogle Scholar
  47. 47.
    J. Williamson, F.P. Glasser, Optical and physical properties of Er3+-doped oxy-fluoride tellurite glasses. Glas. Phys. Chem. 5, 52–59 (1964)Google Scholar
  48. 48.
    Y. Syono, S. Akimoto, Y. Matsui, Crystallization kinetic of glass particles prepared from a mixture of coal ash and soda-lime cullet glass. J. Solid State Chem. 3, 369–380 (1971)CrossRefGoogle Scholar
  49. 49.
    H.P. Rooksby, A.H. McKeag, Trans. Faraday Soc. 37, 308–311 (1941)CrossRefGoogle Scholar
  50. 50.
    F. Marumo, Y. Syono, Effects of soda–lime–silica waste glass on transition of Er3+ formation kinetics and micro-structures development in vitreous ceramics. Acta Crystallogr. B 27, 1868–1870 (1971)CrossRefGoogle Scholar
  51. 51.
    Y. Syono, S. Akimoto, Y. Matsui, High pressure transformations in zinc silicates. J. Solid State Chem. 3, 369–380 (1971)CrossRefGoogle Scholar
  52. 52.
    A.E. Ringwood, A. Major, High pressure transformations in zinc germanates and silicates. Nature 215, 1367–1368 (1967)CrossRefGoogle Scholar
  53. 53.
    A.M. Doroshev, M. Olesch, V.M. Logvinov, I.J. Malinovsky, Preparation and characterization of Er3+-doped TeO2-based oxyhalide glasses. Mineral 27, 277–288 (1983)Google Scholar
  54. 54.
    E.N. Bunting, Synthesis, properties and mineralogy of important inorganic materials. J. Am. Ceram. Soc. 13, 5–10 (1930)CrossRefGoogle Scholar
  55. 55.
    B.G. Bagley, E.M. Vogel, W.G. French, G.A. Pasteur, J.N. Gan, J. Tauc, The optical properties of a soda-lime-silica glass in the region from 0.006 to 22 eV. J. Non-Cryst. Solids 22(2), 423–429 (1976)CrossRefGoogle Scholar
  56. 56.
    G. Tammann, Chemische Reaktionen in pulverförmigen Gemengen zweier Kristallarten. Z. Anorg. Allg. Chem. 149(1), 21–98 (1925)Google Scholar
  57. 57.
    A. Pabst, Röntgenuntersuchung über die Bildung von Zinksilicaten. Z. Phys. Chem. 142A(1), 227–232 (1929)CrossRefGoogle Scholar
  58. 58.
    E.J. King, The phosphatases, alkaline phosphatase. Postgrad. Med. J. 27(304), 64–66 (1951)CrossRefGoogle Scholar
  59. 59.
    S. Takagi, Dynamical theory of diffraction applicable to crystals with any kind of small distortion. Acta Crystallogr. 15(12), 1311–1312 (1962)CrossRefGoogle Scholar
  60. 60.
    R. Morimo, K. Matae, Preparation of Zn2SiO4:Mn phosphors by alkoxide method. Mater. Res. Bull. 24(2), 175–179 (1989)CrossRefGoogle Scholar
  61. 61.
    H. Su, D.L. Johnson, Master sintering curve: a practical approach to sintering. J. Am. Ceram. Soc. 79(12), 3211–3217 (1996)CrossRefGoogle Scholar
  62. 62.
    H. Yang, J. Shi, M. Gong, A novel approach for preparation of Zn2SiO4: Tb nanoparticles by sol-gel-microwave heating. J. Mater. Sci. 40(22), 6007–6010 (2005).
  63. 63.
    H. Yang et al., Synthesis and photoluminescence of Eu3+- or Tb 3+-doped Mg2SiO4 nanoparticles prepared by a combined novel approach. J. Lumin. 118(2), 257–264 (2006)CrossRefGoogle Scholar
  64. 64.
    L. Reynaud et al., A new solution route to silicates. Part 3: Aqueous sol-gel synthesis of willemite and potassium antimony silicate. Mater. Res. Bull. 31(9), 1133–1139 (1996)CrossRefGoogle Scholar
  65. 65.
    S. Zhang et al., Synthesis and electrochemical properties of Zn2SiO4 nano/mesorods. Mater. Lett. 100, 89–92 (2013)CrossRefGoogle Scholar
  66. 66.
    K. Kodaira, S. Ito, T. Matsushita, Hydrothermal growth of willemite single crystals in acidic solutions. J. Cryst. Growth 29(1), 123–124 (1975)CrossRefGoogle Scholar
  67. 67.
    K.-I. Komatsu, M. Mizuno, R. Kodaira, Effect of methionine on cephalosporin C and penicillin N production by a mutant of Cephalosporium acremonium. J. Antibiot. 28(11), 881–888 (1975)CrossRefGoogle Scholar
  68. 68.
    A. Roy, S. Polarz, S. Rabe, B. Rellinghaus, H. Zahres, F.E. Kruis, M. Driess, First preparation of nanocrystalline zinc silicate by chemical vapor synthesis using an organometallic single-source precursor. Chemistry 10(6), 1565–1575 (2004)CrossRefGoogle Scholar
  69. 69.
    L. Hench, J. Wilson, An introduction to bioceramics. Adv. Ser. Ceram. 18, 1–389 (1999)Google Scholar
  70. 70.
    J. Du, L. Kokou, Europium environment and clustering in europium doped silica and sodium silicate glasses. J. Non-Cryst. Solids 357(11), 2235–2240 (2011)CrossRefGoogle Scholar
  71. 71.
    Z. Pan et al., Terbium-activated lithium–lanthanum–aluminosilicate oxyfluoride scintillating glass and glass-ceramic. Nucl. Instrum. Methods Phys. Res. Section A 594(2), 215–219 (2008)CrossRefGoogle Scholar
  72. 72.
    M.-L. Brandily-Anne et al., Specific absorption spectra of cerium in multicomponent silicate glasses. J. Non-Cryst. Solids 356(44), 2337–2343 (2010)CrossRefGoogle Scholar
  73. 73.
    E.F. Chillcce et al., Optical and physical properties of Er3+-doped oxy-fluoride tellurite glasses. Opt. Mater. 33(3), 389–396 (2011)CrossRefGoogle Scholar
  74. 74.
    L. Fortes et al., Preparation and characterization of Er3+-doped TeO2-based oxyhalide glasses. J. Non-Cryst. Solids 324(1), 150–158 (2003)Google Scholar
  75. 75.
    L.C. Courrol et al., Lead fluoroborate glasses doped with Nd3+. J. Lumin. 102–103, 101–105 (2003)Google Scholar
  76. 76.
    I.-I. Oprea, H. Hesse, K. Betzler, Luminescence of erbium-doped bismuth–borate glasses. Opt. Mater. 28(10), 1136–1142 (2006)CrossRefGoogle Scholar
  77. 77.
    S. Rada et al., Spectroscopic properties and ab initio calculations on the structure of erbium–zinc-borate glasses and glass ceramics. J. Non-Cryst. Solids 358(1), 30–35 (2012)CrossRefGoogle Scholar
  78. 78.
    D. Bento dos Santos et al., Itaquaquecetuba formation palynostratigraphy, São Paulo Basin, Brazil. Rev. Bras. Paleontolog. 13, 205–220 (2010)CrossRefGoogle Scholar
  79. 79.
    M. Mortier, P. Goldner, C. Chateau, M. Genotelle, Erbium doped glass–ceramics: concentration effect on crystal structure and energy transfer between active ions. J. Alloys Compd. 323–324, 245–249 (2001)CrossRefGoogle Scholar
  80. 80.
    Y. Jestin et al., Erbium activated HfO2 based glass–ceramics waveguides for photonics. J. Non-Cryst. Solids 20, 494–497 (2007)Google Scholar
  81. 81.
    F. Oktar, G. Göller, Sintering effects on mechanical properties of glass-reinforced hydroxyapatite composites. Ceram. Int. 28(6), 617–621 (2002)CrossRefGoogle Scholar
  82. 82.
    A. Verma, R. Chatterjee, Effect of zinc concentration on the structural, electrical and magnetic properties of mixed Mn–Zn and Ni–Zn ferrites synthesized by the citrate precursor technique. J. Magn. Magn. Mater. 306, 313–319 (2006)CrossRefGoogle Scholar
  83. 83.
    N.Y. Mostafa, A.A. Shaltout, S. Abdel-Aal, A. El-maghraby, Sintering mechanism of blast furnace slag–kaolin ceramics. Mater. Des. 31(8), 3677–3682 (2010)CrossRefGoogle Scholar
  84. 84.
    M.-T. Tsai et al., Photoluminescence of titanium-doped zinc orthosilicate phosphor gel films. IOP Conf. Ser. Mater. Sci. Eng. 18(3), 032012 (2011)CrossRefGoogle Scholar
  85. 85.
    M. Takesue, H. Hayashi, R.L. Smith, Thermal and chemical methods for producing zinc silicate (willemite): a review. Prog. Cryst. Growth Charact. Mater. 55(3), 98–124 (2009)CrossRefGoogle Scholar
  86. 86.
    G.T. Chandrappa, S. Ghosh, K.C. Patil, Synthesis of glass-ceramic. J. Mater. Synth. Process. 7(1), 273–282 (1999)CrossRefGoogle Scholar
  87. 87.
    C. Lin, P. Shen, Sol-gel synthesis of zinc orthosilicate. J. Non-Cryst. Solids 171(3), 281–289 (1994)CrossRefGoogle Scholar
  88. 88.
    R.P. Sreekanth Chakradhar, B.M. Nagabhushana, G.T. Chandrappa, K.P. Ramesh, J.L. Rao, J. Opt. Soc. Am. 121, 10250–10259 (2004)Google Scholar
  89. 89.
    P. Taret, Etude infra-rouge des orthosilicates et des orthogermanates Une nouvelle methode d’interprétation des spectres. Spectrochim. Acta 18(4), 467–483 (1962)Google Scholar
  90. 90.
    M. Bosca, L. Pop, G. Borodi, P. Pascuta, E. Culea, XRD and FTIR structural investigations of erbium-doped bismuth–lead–silver glasses and glass ceramics. J. Alloys Compd. 479(1–2), 579–582 (2009)CrossRefGoogle Scholar
  91. 91.
    I. Jlassi, H. Elhouichet, S. Hraiech, M. Ferid, Effect of heat treatment on the structural and optical properties of tellurite glasses doped erbium. J. Lumin. 132(3), 832–840 (2012)CrossRefGoogle Scholar
  92. 92.
    A. Polman, Erbium implanted thin film photonic materials. J. Appl. Phys. 82(1), 1–39 (1997)MathSciNetCrossRefGoogle Scholar
  93. 93.
    J. Laegsgaard, Theory of Al2O3 incorporation in SiO2. Phys. Rev. B 65(17), 174104 (2002)CrossRefGoogle Scholar
  94. 94.
    F. Auzel, On the maximum splitting of the (2F7/2) ground state in Yb3+-doped solid state laser materials. J. Lumin. 93(2), 129–135 (2001)CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Gholamreza Vahedi Sarrigani
    • 1
    • 2
  • Iraj Sadegh Amiri
    • 3
  1. 1.School of Chemical and Biomolecular EngineeringThe University of SydneyDarlingtonAustralia
  2. 2.Materials Synthesis and Characterization Laboratory, Institute of Advanced TechnologyUniversiti Putra MalaysiaSerdangMalaysia
  3. 3.Ton Duc Thang UniversityHo Chi Minh CityVietnam

Personalised recommendations