Introduction to Glass and Glass-Ceramic Background

  • Gholamreza Vahedi Sarrigani
  • Iraj Sadegh Amiri
Part of the SpringerBriefs in Electrical and Computer Engineering book series (BRIEFSELECTRIC)


Glass is a product of inorganic fusion obtained by cooling down molten inorganic materials to a rigid condition. Glass ceramics are known, which include an amorphous phase and one or more crystalline phases. Nowadays, glass ceramics are used in different fields such as communications technology and electrical devices. Sintering is known as a shaping process for materials, such as glass and glass ceramics, with extremely high melting points. For instance, in the fabrication of semiconductors, impurities are usually introduced into the host lattice to modify their electrical and optical properties. Doping processes are mainly important for the creation of electronic junctions in silicon and for manufacturing of semiconductor devices. At present, phosphate glasses are commonly utilized for bulk laser applications. However, they are not very suitable for integrated optics purposes, because of their poor chemical stability and low transition temperatures. Conversely, silicate glasses have much better chemical stability, which is important for ion exchange techniques to fabricate optical wave guides. Among oxide glasses, phosphate and silicate glasses are the two most important materials, and they have been used extensively for lasers and fiber. Compared with silicate glasses, phosphate glasses are more limited in their use because they are hydroscopic in nature and have a lower glass transition temperature.


Glass Glass ceramics Silicon Ion exchange Phosphate glasses 


  1. 1.
    F.A. Hummel, Thermal expansion properties of some synthetic lithia minerals. J. Am. Ceram. Soc. 34(8), 235–239 (1951)CrossRefGoogle Scholar
  2. 2.
    W. Holand, G. Beall, Crystallization and properties of a Spodumene-Willemite glass ceramic, in Glass-Ceramic Technology (Wiley, New York, 2002)Google Scholar
  3. 3.
    P.W. McMillan, The glass phase in glass-ceramics. Glass Technol. 15(1), 5–15 (1974)Google Scholar
  4. 4.
    A.M. Hu, M. Li, D.L. Dali, K.M. Mao Liang, Crystallization and properties of a Spodumene-Willemite glass ceramic. Thermochim. Acta 437(1–2), 110–113 (2005)CrossRefGoogle Scholar
  5. 5.
    S.L. Kang, Sintering: Densification, Grain Growth, and Microstructure, vol 5 (Elsevier, Amsterdam, 2005), pp. 9–18CrossRefGoogle Scholar
  6. 6.
    C.B. Carter, M.G. Norton, Ceramic Materials: Science and Engineering, vol 9 (Springer, New York, 2007), pp. 427–443Google Scholar
  7. 7.
    J.F. Shackelford, R.H. Doremus, Ceramic and Glass Materials, Structure, Properties and Processing (Springer, New York, 2008), pp. 1–209CrossRefGoogle Scholar
  8. 8.
    R.M. German, Sintering Theory and Practice (Wiley, New York, 1996)Google Scholar
  9. 9.
    J.R. Woodyard, Electrical Engineering, vol 21 (University of California, Berkeley, 1985), pp. 8–12Google Scholar
  10. 10.
    M.A.T. Sparks, K. Gordon, Method of making P-N junctions in semiconductor materials, 1950 U.S. Patent 2,631,356, 17 March, 1953Google Scholar
  11. 11.
    S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981)Google Scholar
  12. 12.
    W.J. Miniscalco, Erbium-doped glasses for fiber amplifiers at 1500 nm. J. Lightwave Technol. 9, 234–250 (1991)CrossRefGoogle Scholar
  13. 13.
    A.J. Kenyon, Recent developments in rare-earth doped materials for optoelectronics. Prog. Quantum Electron. 26(4–5), 225–284 (2002)CrossRefGoogle Scholar
  14. 14.
    J. Yang, S. Dai, N. Dai, L. Wen, L. Hu, Z. Jiang, Investigation on nonradiative decay of 4I13/24I15/2 transition of Er3+-doped oxide glasses. J. Lumin. 106, 9–14 (2004)CrossRefGoogle Scholar
  15. 15.
    C. Tanaram, C. Teeka, R. Jomtarak, P.P. Yupapin, M.A. Jalil, I.S. Amiri, J. Ali, ASK-to-PSK generation based on nonlinear microring resonators coupled to one MZI arm. Proc. Eng. 8, 432–435 (2011)CrossRefGoogle Scholar
  16. 16.
    P. Capek, M. Mika, J. Oswald, P. Tresnakova, L. Salavcova, O. Kolek, J. Spirkova, Effect of divalent cations on properties of Er3+-doped silicate glasses. Opt. Mater. 27(2), 331–336 (2004)CrossRefGoogle Scholar
  17. 17.
    R. Santos, L. Santos, R. Almeida, Optical and spectroscopic properties of Er-doped niobium germanosilicate glasses and glass ceramics. J. Non-Cryst. Solids 356(44–49), 2677–2682 (2010)CrossRefGoogle Scholar
  18. 18.
    R.A. Smith, Semiconductors Second Edit (Cambridge University Press, Cambridge, 1978)Google Scholar
  19. 19.
    E.M.A. Khalil, F.H. ElBatal, Y.M. Hamdy, H.M. Zidan, M.S. Aziz, A.M. Abdelghany, Infrared absorption spectra of transition metals-doped soda lime silica glasses. Phys. B Condens. Matter 405(5), 1294–1300 (2010)CrossRefGoogle Scholar
  20. 20.
    S. Berneschi, M. Bettinelli, M. Brenci, R. Dall’Igna, G. Nunzi Conti, S. Pelli, B. Profilo, S. Sebastiani, A. Speghini, G.C. Righini, Optical and spectroscopic properties of soda-lime alumino silicate glasses doped with Er3+ and/or Yb3+. Opt. Mater. 28(11), 1271–1275 (2006)CrossRefGoogle Scholar
  21. 21.
    G.C. Righini, C. Arnaud, S. Berneschi, M. Bettinelli, M. Brenci, A. Chiasera, L. Zampedri, Integrated optical amplifiers and microspherical lasers based on erbium-doped oxide glasses. Opt. Mater. 27(11), 1711–1717 (2005)CrossRefGoogle Scholar
  22. 22.
    A. Ananthanarayanan, G.P. Kothiyal, L. Montagne, B. Revel, MAS-NMR investigations of the crystallization behaviour of lithium aluminum silicate (LAS) glasses containing P2O5 and TiO2 nucleants. J. Solid State Chem. 183(6), 1416–1422 (2010)CrossRefGoogle Scholar
  23. 23.
    J. Du, C. Chen, Structure and lithium ion diffusion in lithium silicate glasses and at their interfaces with lithium lanthanum titanate crystals. J. Non-Cryst. Solids 358(24), 3531–3538 (2012)CrossRefGoogle Scholar
  24. 24.
    Y. Hayashi, M. Kudo, Mechanism for changes in surface composition of float glass and its effects on the mechanical properties. J. Chem. Soc. Jpn. Chem. Ind. Chem. 4, 217–228 (2001)Google Scholar
  25. 25.
    H. Wang, G. Isgrò, P. Pallav, A. Feilzer, J. Chao, Y. Chao, Influence of test methods on fracture toughness of a dental porcelain and a soda lime glass. J. Am. Ceram. Soc. 88(10), 2868–2873 (2005)CrossRefGoogle Scholar
  26. 26.
    C. Mercier, G. Palavit, L. Montagne, C. Follet-Houttemane, A survey of transition-metal-containing phosphate glasses. C. R. Chim. 5(11), 693–703 (2002)CrossRefGoogle Scholar
  27. 27.
    F.H.A. Elbatal, M.M.I. Khalil, N. Nada, S.A. Desouky, Gamma rays interaction with ternary silicate glasses containing mixed CoO+NiO. Mater. Chem. Phys. 82(2), 375–387 (2003)CrossRefGoogle Scholar
  28. 28.
    D.L. Veasey, D.S. Funk, N.A. Sanford, J.S. Hayden, Arrays of distributed-Bragg-reflector waveguide lasers at 1536 nm in Yb/Er co-doped phosphate glass. Appl. Phys. Lett. 74, 789–791 (1999)CrossRefGoogle Scholar
  29. 29.
    H. Lin, E.Y.B. Pun, X.R. Liu, Erbium-activated aluminum fluoride glasses: optical and spectroscopic properties. J. Non-Cryst. Solids 283, 27–33 (2001)CrossRefGoogle Scholar
  30. 30.
    J. Du, L. Kokou, Europium environment and clustering in europium doped silica and sodium silicate glasses. J. Non-Cryst. Solids 357(11–13), 2235–2240 (2011)CrossRefGoogle Scholar
  31. 31.
    Z. Pan, K. James, Y. Cui, A. Burger, N. Cherepy, S.A. Payne, S.H. Morgan, Terbium-activated lithium–lanthanum–aluminosilicate oxyfluoride scintillating glass and glass-ceramic. Nucl. Instrum. Methods Phys. Res., Sect. A 594(2), 215–219 (2008)CrossRefGoogle Scholar
  32. 32.
    A. Brandily, L. Marie, J. Lumeau, L. Glebova, L. Glebov, Specific absorption spectra of cerium in multicomponent silicate glasses. J. Non-Cryst. Solids 356(44–49), 2337–2343 (2010)CrossRefGoogle Scholar
  33. 33.
    E. Desurvire, R.J. Simpson, P.C. Becker, Preparation and characterizations of Zn2SiO4. Opt. Lett. 12, 888–892 (1987)CrossRefGoogle Scholar
  34. 34.
    P.J. Mears, L. Reekie, I.M. Jauncey, D.N. Payne, Sintering behaviour of pressed transition of Er3+. Electron. Lett. 23, 1026–1031 (1987)CrossRefGoogle Scholar
  35. 35.
    F. Auzel, P. Goldner, Towards rare-earth clustering control in doped glasses. Opt. Mater. 16(1–2), 93–103 (2001)CrossRefGoogle Scholar
  36. 36.
    M. Takesue, H. Hayashi, R. Smith Jr., Thermal and chemical methods for producing zinc silicate (willemite): a review. Prog. Cryst. Growth Charact. Mater. 55(3–4), 98–124 (2009)CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Gholamreza Vahedi Sarrigani
    • 1
    • 2
  • Iraj Sadegh Amiri
    • 3
  1. 1.School of Chemical and Biomolecular EngineeringThe University of SydneyDarlingtonAustralia
  2. 2.Materials Synthesis and Characterization Laboratory, Institute of Advanced TechnologyUniversiti Putra MalaysiaSerdangMalaysia
  3. 3.Ton Duc Thang UniversityHo Chi Minh CityVietnam

Personalised recommendations