Thyroid Gland

  • Danielle Elliott RangeEmail author
  • Michelle D. Williams
Part of the Practical Anatomic Pathology book series (PAP)


The thyroid gland is part of the endocrine system and produces thyroid hormone which influences metabolism and homeostasis. The pathogenesis of thyroid disease is based on its role in iodine metabolism and a host of molecular alterations. The thyroid gland is the site of the most common type of endocrine carcinoma as well as inherited carcinoma syndromes. This chapter discusses the morphologic, molecular, and clinical manifestations of thyroid neoplasia, hyperplasia, and thyroiditis.


Thyroid Papillary thyroid carcinoma Medullary thyroid carcinoma Follicular thyroid carcinoma Follicular adenoma Thyroiditis Hurthle cell adenoma Hurthle cell carcinoma Anaplastic thyroid carcinoma Poorly differentiated thyroid carcinoma Goiter Nodular hyperplasia Graves’ disease Parasitic nodule NIFTP Follicular variant C-cells Solid cell nests Multiple endocrine neoplasia 


  1. 1.
    Manzoni M, Roversi G, Di Bella C, et al. Solid cell nests of the thyroid gland: morphological, immunohistochemical and genetic features. Histopathology. 2016;68(6):866–74.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Ozolek JA. Selective pathologies of the head and neck in children: a developmental perspective. Adv Anat Pathol. 2009;16(5):332–58.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Nilsson M, Fagman H. Development of the thyroid gland. Development. 2017;144(12):2123–40.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Srbecka K, Michalova K, Curcikova R, et al. Spectrum of lesions derived from branchial arches occurring in the thyroid: from solid cell nests to tumors. Virchows Arch. 2017;471(3):393–400.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Rosai J, DeLellis R, Carcangiu M, et al. Tumors of the thyroid and parathyroid glands. Silver Spring: American Registry of Pathology; 2014.Google Scholar
  6. 6.
    Ahmed R, Al-Shaikh S, Akhtar M. Hashimoto thyroiditis: a century later. Adv Anat Pathol. 2012;19(3):181–6.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Papi G, LiVolsi VA. Current concepts on Riedel thyroiditis. Am J Clin Pathol. 2004;121(Suppl):S50–63.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Samuels MH. Subacute, silent, and postpartum thyroiditis. Med Clin North Am. 2012;96(2):223–33.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hennessey JV. Clinical review: Riedel’s thyroiditis: a clinical review. J Clin Endocrinol Metab. 2011;96(10):3031–41.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Kakudo K, Li Y, Hirokawa M, et al. Diagnosis of Hashimoto’s thyroiditis and IgG4-related sclerosing disease. Pathol Int. 2011;61(4):175–83.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Fatourechi V, Aniszewski JP, Fatourechi GZ, et al. Clinical features and outcome of subacute thyroiditis in an incidence cohort: Olmsted County, Minnesota, study. J Clin Endocrinol Metab. 2003;88(5):2100–5.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kojima M, Nakamura S, Oyama T, et al. Cellular composition of subacute thyroiditis. An immunohistochemical study of six cases. Pathol Res Pract. 2002;198(12):833–7.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Pearce EN, Farwell AP, Braverman LE. Thyroiditis. N Engl J Med. 2003;348(26):2646–55.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Harach HR. Palpation thyroiditis resembling C cell hyperplasia. Usefulness of immunohistochemistry in their differential diagnosis. Pathol Res Pract. 1993;189(4):488–90.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kottahachchi D, Topliss DJ. Immunoglobulin G4-related thyroid diseases. Eur Thyroid J. 2016;5(4):231–9.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    El Hussein S, Omarzai Y. Histologic findings and cytological alterations in thyroid nodules after radioactive iodine treatment for Graves’ disease: a diagnostic dilemma. Int J Surg Pathol. 2017;25(4):314–8.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Menconi F, Marcocci C, Marino M. Diagnosis and classification of Graves’ disease. Autoimmun Rev. 2014;13(4–5):398–402.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Smith TJ, Hegedus L. Graves’ disease. N Engl J Med. 2016;375(16):1552–65.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Chung DH, Kang GH, Kim WH, et al. Clonal analysis of a solitary follicular nodule of the thyroid with the polymerase chain reaction method. Mod Pathol. 1999;12(3):265–71.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Kim H, Piao Z, Park C, et al. Clinical significance of clonality in thyroid nodules. Br J Surg. 1998;85(8):1125–8.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Ha SM, Baek JH, Choi YJ, et al. Malignancy risk of initially benign thyroid nodules: validation with various thyroid imaging reporting and data system guidelines. Eur Radiol. 2018.
  22. 22.
    Dean DS, Gharib H. Epidemiology of thyroid nodules. Best Pract Res Clin Endocrinol Metab. 2008;22(6):901–11.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Popoveniuc G, Jonklaas J. Thyroid nodules. Med Clin North Am. 2012;96(2):329–49.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Shikama Y, Mizukami H, Sakai T, et al. Spindle cell metaplasia arising in thyroid adenoma: characterization of its pathology and differential diagnosis. J Endocrinol Investig. 2006;29(2):168–71.CrossRefGoogle Scholar
  25. 25.
    Liu Z, Zeng W, Huang L, et al. Prognosis of FTC compared to PTC and FVPTC: findings based on SEER database using propensity score matching analysis. Am J Cancer Res. 2018;8(8):1440–8.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Cipriani NA, Nagar S, Kaplan SP, et al. Follicular thyroid carcinoma: how have histologic diagnoses changed in the last half-century and what are the prognostic implications? Thyroid. 2015;25(11):1209–16.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kim HJ, Sung JY, Oh YL, et al. Association of vascular invasion with increased mortality in patients with minimally invasive follicular thyroid carcinoma but not widely invasive follicular thyroid carcinoma. Head Neck. 2014;36(12):1695–700.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Sugino K, Kameyama K, Ito K, et al. Outcomes and prognostic factors of 251 patients with minimally invasive follicular thyroid carcinoma. Thyroid. 2012;22(8):798–804.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Ito Y, Hirokawa M, Masuoka H, et al. Prognostic factors of minimally invasive follicular thyroid carcinoma: extensive vascular invasion significantly affects patient prognosis. Endocr J. 2013;60(5):637–42.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Mete O, Asa SL. Pathological definition and clinical significance of vascular invasion in thyroid carcinomas of follicular epithelial derivation. Mod Pathol. 2011;24(12):1545–52.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Ghossein R. Problems and controversies in the histopathology of thyroid carcinomas of follicular cell origin. Arch Pathol Lab Med. 2009;133(5):683–91.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Montone KT, Baloch ZW, LiVolsi VA. The thyroid Hurthle (oncocytic) cell and its associated pathologic conditions: a surgical pathology and cytopathology review. Arch Pathol Lab Med. 2008;132(8):1241–50.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Sugino K, Kameyama K, Ito K, et al. Does Hurthle cell carcinoma of the thyroid have a poorer prognosis than ordinary follicular thyroid carcinoma? Ann Surg Oncol. 2013;20(9):2944–50.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Goffredo P, Roman SA, Sosa JA. Hurthle cell carcinoma: a population-level analysis of 3311 patients. Cancer. 2013;119(3):504–11.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Nagar S, Aschebrook-Kilfoy B, Kaplan EL, et al. Hurthle cell carcinoma: an update on survival over the last 35 years. Surgery. 2013;154(6):1263–71; discussion 71.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Oluic B, Paunovic I, Loncar Z, et al. Survival and prognostic factors for survival, cancer specific survival and disease free interval in 239 patients with Hurthle cell carcinoma: a single center experience. BMC Cancer. 2017;17(1):371.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Ghossein RA, Hiltzik DH, Carlson DL, et al. Prognostic factors of recurrence in encapsulated Hurthle cell carcinoma of the thyroid gland: a clinicopathologic study of 50 cases. Cancer. 2006;106(8):1669–76.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Asioli S, Erickson LA, Righi A, et al. Poorly differentiated carcinoma of the thyroid: validation of the Turin proposal and analysis of IMP3 expression. Mod Pathol. 2010;23(9):1269–78.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Dettmer M, Schmitt A, Steinert H, et al. Poorly differentiated thyroid carcinomas: how much poorly differentiated is needed? Am J Surg Pathol. 2011;35(12):1866–72.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Gnemmi V, Renaud F, Do Cao C, et al. Poorly differentiated thyroid carcinomas: application of the Turin proposal provides prognostic results similar to those from the assessment of high-grade features. Histopathology. 2014;64(2):263–73.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Hiltzik D, Carlson DL, Tuttle RM, et al. Poorly differentiated thyroid carcinomas defined on the basis of mitosis and necrosis: a clinicopathologic study of 58 patients. Cancer. 2006;106(6):1286–95.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Volante M, Collini P, Nikiforov YE, et al. Poorly differentiated thyroid carcinoma: the Turin proposal for the use of uniform diagnostic criteria and an algorithmic diagnostic approach. Am J Surg Pathol. 2007;31(8):1256–64.CrossRefGoogle Scholar
  43. 43.
    Volante M, Rapa I, Gandhi M, et al. RAS mutations are the predominant molecular alteration in poorly differentiated thyroid carcinomas and bear prognostic impact. J Clin Endocrinol Metab. 2009;94(12):4735–41.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Setia N, Barletta JA. Poorly differentiated thyroid carcinoma. Surg Pathol Clin. 2014;7(4):475–89.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Sakamoto A. Definition of poorly differentiated carcinoma of the thyroid: the Japanese experience. Endocr Pathol. 2004;15(4):307–11.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Etit D, Faquin WC, Gaz R, et al. Histopathologic and clinical features of medullary microcarcinoma and C-cell hyperplasia in prophylactic thyroidectomies for medullary carcinoma: a study of 42 cases. Arch Pathol Lab Med. 2008;132(11):1767–73.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Sakorafas GH, Nasikas D, Thanos D, et al. Incidental thyroid C cell hyperplasia: clinical significance and implications in practice. Oncol Res Treat. 2015;38(5):249–52.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Saggiorato E, Rapa I, Garino F, et al. Absence of RET gene point mutations in sporadic thyroid C-cell hyperplasia. J Mol Diagn. 2007;9(2):214–9.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Faggiano A, Talbot M, Lacroix L, et al. Differential expression of galectin-3 in medullary thyroid carcinoma and C-cell hyperplasia. Clin Endocrinol. 2002;57(6):813–9.CrossRefGoogle Scholar
  50. 50.
    Albores-Saavedra JA, Krueger JE. C-cell hyperplasia and medullary thyroid microcarcinoma. Endocr Pathol. 2001;12(4):365–77.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Wells SA Jr, Asa SL, Dralle H, et al. Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma. Thyroid. 2015;25(6):567–610.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Accardo G, Conzo G, Esposito D, et al. Genetics of medullary thyroid cancer: an overview. Int J Surg (London, England). 2017;41(Suppl 1):S2–6.CrossRefGoogle Scholar
  53. 53.
    Chernock RD, Hagemann IS. Molecular pathology of hereditary and sporadic medullary thyroid carcinomas. Am J Clin Pathol. 2015;143(6):768–77.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Griebeler ML, Gharib H, Thompson GB. Medullary thyroid carcinoma. Endocr Pract. 2013;19(4):703–11.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Hu MI, Ying AK, Jimenez C. Update on medullary thyroid cancer. Endocrinol Metab Clin N Am. 2014;43(2):423–42.CrossRefGoogle Scholar
  56. 56.
    Moo-Young TA, Traugott AL, Moley JF. Sporadic and familial medullary thyroid carcinoma: state of the art. Surg Clin North Am. 2009;89(5):1193–204.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Pacini F, Castagna MG, Cipri C, et al. Medullary thyroid carcinoma. Clin Oncol (R Coll Radiol). 2010;22(6):475–85.CrossRefGoogle Scholar
  58. 58.
    Fagin JA, Wells SA Jr. Biologic and clinical perspectives on thyroid cancer. N Engl J Med. 2016;375(11):1054–67.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Lam AK, Saremi N. Cribriform-morular variant of papillary thyroid carcinoma: a distinctive type of thyroid cancer. Endocr Relat Cancer. 2017;24(4):R109–r21.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Lloyd RV, Osamura RY, Klöppel G, Rosai J. WHO classification of tumours of endocrine organs. 4th ed. Lyon: IARC; 2017.Google Scholar
  61. 61.
    Nath MC, Erickson LA. Aggressive variants of papillary thyroid carcinoma: hobnail, tall cell, columnar, and solid. Adv Anat Pathol. 2018;25(3):172–9.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Wang X, Cheng W, Liu C, et al. Tall cell variant of papillary thyroid carcinoma: current evidence on clinicopathologic features and molecular biology. Oncotarget. 2016;7(26):40792–9.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Kazaure HS, Roman SA, Sosa JA. Aggressive variants of papillary thyroid cancer: incidence, characteristics and predictors of survival among 43,738 patients. Ann Surg Oncol. 2012;19(6):1874–80.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Ito Y, Hirokawa M, Miyauchi A, et al. Prognostic significance of the proportion of tall cell components in papillary thyroid carcinoma. World J Surg. 2017;41(3):742–7.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Dettmer MS, Schmitt A, Steinert H, et al. Tall cell papillary thyroid carcinoma: new diagnostic criteria and mutations in BRAF and TERT. Endocr Relat Cancer. 2015;22(3):419–29.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Ganly I, Ibrahimpasic T, Rivera M, et al. Prognostic implications of papillary thyroid carcinoma with tall-cell features. Thyroid. 2014;24(4):662–70.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Shi X, Liu R, Basolo F, et al. Differential clinicopathological risk and prognosis of major papillary thyroid cancer variants. J Clin Endocrinol Metab. 2016;101(1):264–74.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    LiVolsi VA. Papillary carcinoma tall cell variant (TCV): a review. Endocr Pathol. 2010;21(1):12–5.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Beninato T, Scognamiglio T, Kleiman DA, et al. Ten percent tall cells confer the aggressive features of the tall cell variant of papillary thyroid carcinoma. Surgery. 2013;154(6):1331–6; discussion 6.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Nikiforov YE, Erickson LA, Nikiforova MN, et al. Solid variant of papillary thyroid carcinoma: incidence, clinical-pathologic characteristics, molecular analysis, and biologic behavior. Am J Surg Pathol. 2001;25(12):1478–84.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Ohashi R, Kawahara K, Namimatsu S, et al. Clinicopathological significance of a solid component in papillary thyroid carcinoma. Histopathology. 2017;70(5):775–81.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Vuong HG, Odate T, Duong UNP, et al. Prognostic importance of solid variant papillary thyroid carcinoma: a systematic review and meta-analysis. Head Neck. 2018;40(7):1588–97.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Bai Y, Kakudo K, Li Y, et al. Subclassification of non-solid-type papillary thyroid carcinoma identification of high-risk group in common type. Cancer Sci. 2008;99(10):1908–15.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Bongiovanni M, Mermod M, Canberk S, et al. Columnar cell variant of papillary thyroid carcinoma: cytomorphological characteristics of 11 cases with histological correlation and literature review. Cancer Cytopathol. 2017;125(6):389–97.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Sujoy V, Pinto A, Nose V. Columnar cell variant of papillary thyroid carcinoma: a study of 10 cases with emphasis on CDX2 expression. Thyroid. 2013;23(6):714–9.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Chen JH, Faquin WC, Lloyd RV, et al. Clinicopathological and molecular characterization of nine cases of columnar cell variant of papillary thyroid carcinoma. Mod Pathol. 2011;24(5):739–49.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Jiang C, Cheng T, Zheng X, et al. Clinical behaviors of rare variants of papillary thyroid carcinoma are associated with survival: a population-level analysis. Cancer Manag Res. 2018;10:465–72.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Feng J, Shen F, Cai W, et al. Survival of aggressive variants of papillary thyroid carcinoma in patients under 55 years old: a SEER population-based retrospective analysis. Endocrine. 2018.
  79. 79.
    Malandrino P, Russo M, Regalbuto C, et al. Outcome of the diffuse sclerosing variant of papillary thyroid cancer: a meta-analysis. Thyroid. 2016;26(9):1285–92.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Vuong HG, Kondo T, Pham TQ, et al. Prognostic significance of diffuse sclerosing variant papillary thyroid carcinoma: a systematic review and meta-analysis. Eur J Endocrinol. 2017;176(4):431–9.CrossRefGoogle Scholar
  81. 81.
    Pillai S, Gopalan V, Smith RA, et al. Diffuse sclerosing variant of papillary thyroid carcinoma – an update of its clinicopathological features and molecular biology. Crit Rev Oncol Hematol. 2015;94(1):64–73.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Regalbuto C, Malandrino P, Tumminia A, et al. A diffuse sclerosing variant of papillary thyroid carcinoma: clinical and pathologic features and outcomes of 34 consecutive cases. Thyroid. 2011;21(4):383–9.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Thompson LD, Wieneke JA, Heffess CS. Diffuse sclerosing variant of papillary thyroid carcinoma: a clinicopathologic and immunophenotypic analysis of 22 cases. Endocr Pathol. 2005;16(4):331–48.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Asioli S, Erickson LA, Sebo TJ, et al. Papillary thyroid carcinoma with prominent hobnail features: a new aggressive variant of moderately differentiated papillary carcinoma. A clinicopathologic, immunohistochemical, and molecular study of eight cases. Am J Surg Pathol. 2010;34(1):44–52.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Asioli S, Erickson LA, Righi A, et al. Papillary thyroid carcinoma with hobnail features: histopathologic criteria to predict aggressive behavior. Hum Pathol. 2013;44(3):320–8.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Amacher AM, Goyal B, Lewis JS Jr, et al. Prevalence of a hobnail pattern in papillary, poorly differentiated, and anaplastic thyroid carcinoma: a possible manifestation of high-grade transformation. Am J Surg Pathol. 2015;39(2):260–5.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Ambrosi F, Righi A, Ricci C, et al. Hobnail variant of papillary thyroid carcinoma: a literature review. Endocr Pathol. 2017;28(4):293–301.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Cameselle-Teijeiro JM, Rodriguez-Perez I, Celestino R, et al. Hobnail variant of papillary thyroid carcinoma: clinicopathologic and molecular evidence of progression to undifferentiated carcinoma in 2 cases. Am J Surg Pathol. 2017;41(6):854–60.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Teng L, Deng W, Lu J, et al. Hobnail variant of papillary thyroid carcinoma: molecular profiling and comparison to classical papillary thyroid carcinoma, poorly differentiated thyroid carcinoma and anaplastic thyroid carcinoma. Oncotarget. 2017;8(13):22023–33.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Watutantrige-Fernando S, Vianello F, Barollo S, et al. The hobnail variant of papillary thyroid carcinoma: clinical/molecular characteristics of a large monocentric series and comparison with conventional histotypes. Thyroid. 2018;28(1):96–103.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Liu J, Singh B, Tallini G, et al. Follicular variant of papillary thyroid carcinoma: a clinicopathologic study of a problematic entity. Cancer. 2006;107(6):1255–64.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Zidan J, Karen D, Stein M, et al. Pure versus follicular variant of papillary thyroid carcinoma: clinical features, prognostic factors, treatment, and survival. Cancer. 2003;97(5):1181–5.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Zhu Z, Gandhi M, Nikiforova MN, et al. Molecular profile and clinical-pathologic features of the follicular variant of papillary thyroid carcinoma. An unusually high prevalence of ras mutations. Am J Clin Pathol. 2003;120(1):71–7.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Jain M, Khan A, Patwardhan N, et al. Follicular variant of papillary thyroid carcinoma: a comparative study of histopathologic features and cytology results in 141 patients. Endocr Pract. 2001;7(2):79–84.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Lang BH, Lo CY, Chan WF, et al. Classical and follicular variant of papillary thyroid carcinoma: a comparative study on clinicopathologic features and long-term outcome. World J Surg. 2006;30(5):752–8.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Passler C, Prager G, Scheuba C, et al. Follicular variant of papillary thyroid carcinoma: a long-term follow-up. Arch Surg (Chicago, Ill: 1960). 2003;138(12):1362–6.CrossRefGoogle Scholar
  97. 97.
    Castro P, Rebocho AP, Soares RJ, et al. PAX8-PPARgamma rearrangement is frequently detected in the follicular variant of papillary thyroid carcinoma. J Clin Endocrinol Metab. 2006;91(1):213–20.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Sowder AM, Witt BL, Hunt JP. An update on the risk of lymph node metastasis for the follicular variant of papillary thyroid carcinoma with the new diagnostic paradigm. Head Neck Pathol. 2018;12(1):105–9.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Wong KS, Strickland KC, Angell TE, et al. The Flip side of NIFTP: an increase in rates of unfavorable histologic parameters in the remainder of papillary thyroid carcinomas. Endocr Pathol. 2017;28(2):171–6.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Trovisco V, Soares P, Preto A, et al. Type and prevalence of BRAF mutations are closely associated with papillary thyroid carcinoma histotype and patients’ age but not with tumour aggressiveness. Virchows Arch. 2005;446(6):589–95.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Lloyd RV, Erickson LA, Casey MB, et al. Observer variation in the diagnosis of follicular variant of papillary thyroid carcinoma. Am J Surg Pathol. 2004;28(10):1336–40.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Elsheikh TM, Asa SL, Chan JK, et al. Interobserver and intraobserver variation among experts in the diagnosis of thyroid follicular lesions with borderline nuclear features of papillary carcinoma. Am J Clin Pathol. 2008;130(5):736–44.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Lin HW, Bhattacharyya N. Clinical behavior of follicular variant of papillary thyroid carcinoma: presentation and survival. Laryngoscope. 2010;120(4):712–6.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Rivera M, Ricarte-Filho J, Knauf J, et al. Molecular genotyping of papillary thyroid carcinoma follicular variant according to its histological subtypes (encapsulated vs infiltrative) reveals distinct BRAF and RAS mutation patterns. Mod Pathol. 2010;23(9):1191–200.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Zhao L, Dias-Santagata D, Sadow PM, et al. Cytological, molecular, and clinical features of noninvasive follicular thyroid neoplasm with papillary-like nuclear features versus invasive forms of follicular variant of papillary thyroid carcinoma. Cancer Cytopathol. 2017;125(5):323–31.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Xu B, Farhat N, Barletta JA, et al. Should subcentimeter non-invasive encapsulated, follicular variant of papillary thyroid carcinoma be included in the noninvasive follicular thyroid neoplasm with papillary-like nuclear features category? Endocrine. 2018;59(1):143–50.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Xu B, Tallini G, Scognamiglio T, et al. Outcome of large noninvasive follicular thyroid neoplasm with papillary-like nuclear features. Thyroid. 2017;27(4):512–7.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Xu B, Tallini G, Ghossein RA. Noninvasive follicular thyroid neoplasm with papillary-like nuclear features: historical context, diagnosis, and future challenges. Endocr Pathol. 2017.
  109. 109.
    Tallini G, Tuttle RM, Ghossein RA. The history of the follicular variant of papillary thyroid carcinoma. J Clin Endocrinol Metab. 2017;102(1):15–22.PubMedPubMedCentralGoogle Scholar
  110. 110.
    Rosario PW. Long-term outcomes of patients with noninvasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP) >/=4 cm treated without radioactive iodine. Endocr Pathol. 2017. [Epub ahead of print].
  111. 111.
    Paulson VA, Shivdasani P, Angell TE, et al. Noninvasive follicular thyroid neoplasm with papillary-like nuclear features accounts for more than half of “carcinomas” harboring RAS mutations. Thyroid. 2017;27(4):506–11.CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Jug R, Jiang X. Noninvasive follicular thyroid neoplasm with papillary-like nuclear features: an evidence-based nomenclature change. Pathol Res Int. 2017;2017:1057252.CrossRefGoogle Scholar
  113. 113.
    Bychkov A, Hirokawa M, Jung CK, et al. Low rate of NIFTP in Asian practice. Thyroid. 2017;27(7):983–4.CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Thompson LD. Ninety-four cases of encapsulated follicular variant of papillary thyroid carcinoma: a name change to noninvasive follicular thyroid neoplasm with papillary-like nuclear features would help prevent overtreatment. Mod Pathol. 2016;29(7):698–707.CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Nikiforov YE, Seethala RR, Tallini G, et al. Nomenclature revision for encapsulated follicular variant of papillary thyroid carcinoma: a paradigm shift to reduce overtreatment of indolent tumors. JAMA Oncol. 2016;2(8):1023–9.CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Range DE, Jiang XS. An update on noninvasive follicular thyroid neoplasm with papillary-like nuclear features. Curr Opin Oncol. 2018;30(1):1–7.CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Faquin WC, Wong LQ, Afrogheh AH, et al. Impact of reclassifying noninvasive follicular variant of papillary thyroid carcinoma on the risk of malignancy in the Bethesda system for reporting thyroid cytopathology. Cancer Cytopathol. 2016;124(3):181–7.CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Jiang XS, Harrison GP, Datto MB. Young investigator challenge: molecular testing in noninvasive follicular thyroid neoplasm with papillary-like nuclear features. Cancer. 2016;124(12):893–900.Google Scholar
  119. 119.
    Seethala RR, Baloch ZW, Barletta JA, et al. Noninvasive follicular thyroid neoplasm with papillary-like nuclear features: a review for pathologists. Mod Pathol. 2018;31(1):39–55.CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Davies L, Welch HG. Current thyroid cancer trends in the United States. JAMA Otolaryngol Head Neck Surg. 2014;140(4):317–22.CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Veiga LH, Neta G, Aschebrook-Kilfoy B, et al. Thyroid cancer incidence patterns in Sao Paulo, Brazil, and the U.S. SEER program, 1997–2008. Thyroid. 2013;23(6):748–57.CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Chen Y, Sadow PM, Suh H, et al. BRAF(V600E) is correlated with recurrence of papillary thyroid microcarcinoma: a systematic review, multi-institutional primary data analysis, and meta-analysis. Thyroid. 2016;26(2):248–55.CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Mehanna H, Al-Maqbili T, Carter B, et al. Differences in the recurrence and mortality outcomes rates of incidental and nonincidental papillary thyroid microcarcinoma: a systematic review and meta-analysis of 21 329 person-years of follow-up. J Clin Endocrinol Metab. 2014;99(8):2834–43.CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Niemeier LA, Kuffner Akatsu H, Song C, et al. A combined molecular-pathologic score improves risk stratification of thyroid papillary microcarcinoma. Cancer. 2012;118(8):2069–77.CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Zhi J, Zhao J, Gao M, et al. Impact of major different variants of papillary thyroid microcarcinoma on the clinicopathological characteristics: the study of 1041 cases. Int J Clin Oncol. 2018;23(1):59–65.CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Chow SM, Law SC, Chan JK, et al. Papillary microcarcinoma of the thyroid-prognostic significance of lymph node metastasis and multifocality. Cancer. 2003;98(1):31–40.CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Akaishi J, Kondo T, Sugino K, et al. Cribriform-Morular variant of papillary thyroid carcinoma: clinical and pathological features of 30 cases. World J Surg. 2018.
  128. 128.
    Pradhan D, Sharma A, Mohanty SK. Cribriform-morular variant of papillary thyroid carcinoma. Pathol Res Pract. 2015;211(10):712–6.CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Baloch ZW, Shafique K, Flannagan M, et al. Encapsulated classic and follicular variants of papillary thyroid carcinoma: comparative clinicopathologic study. Endocr Pract. 2010;16(6):952–9.CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Rivera M, Tuttle RM, Patel S, et al. Encapsulated papillary thyroid carcinoma: a clinico-pathologic study of 106 cases with emphasis on its morphologic subtypes (histologic growth pattern). Thyroid. 2009;19(2):119–27.CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Apel RL, Asa SL, LiVolsi VA. Papillary Hurthle cell carcinoma with lymphocytic stroma. “Warthin-like tumor” of the thyroid. Am J Surg Pathol. 1995;19(7):810–4.CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Baloch ZW, LiVolsi VA. Warthin-like papillary carcinoma of the thyroid. Arch Pathol Lab Med. 2000;124(8):1192–5.PubMedPubMedCentralGoogle Scholar
  133. 133.
    Paliogiannis P, Attene F, Trogu F, et al. Warthin-like papillary carcinoma of the thyroid gland: case report and review of the literature. Case Rep Oncol Med. 2012;2012:689291.PubMedPubMedCentralGoogle Scholar
  134. 134.
    Urano M, Abe M, Kuroda M, et al. Warthin-like tumor variant of papillary thyroid carcinoma: case report and literature review. Pathol Int. 2001;51(9):707–12.CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Carney JA, Hirokawa M, Lloyd RV, et al. Hyalinizing trabecular tumors of the thyroid gland are almost all benign. Am J Surg Pathol. 2008;32(12):1877–89.CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Gaffney RL, Carney JA, Sebo TJ, et al. Galectin-3 expression in hyalinizing trabecular tumors of the thyroid gland. Am J Surg Pathol. 2003;27(4):494–8.CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Galgano MT, Mills SE, Stelow EB. Hyalinizing trabecular adenoma of the thyroid revisited: a histologic and immunohistochemical study of thyroid lesions with prominent trabecular architecture and sclerosis. Am J Surg Pathol. 2006;30(10):1269–73.CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Nose V, Volante M, Papotti M. Hyalinizing trabecular tumor of the thyroid: an update. Endocr Pathol. 2008;19(1):1–8.CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Salvatore G, Chiappetta G, Nikiforov YE, et al. Molecular profile of hyalinizing trabecular tumours of the thyroid: high prevalence of RET/PTC rearrangements and absence of B-raf and N-ras point mutations. Eur J Cancer (Oxford, England: 1990). 2005;41(5):816–21.CrossRefGoogle Scholar
  140. 140.
    Nikiforova MN, Nikitski AV, Panebianco F, Kaya C, Yip L, Williams M, Chiosea SI, Seethala RR, Roy S, Condello V, Santana-Santos L, Wald AI, Carty SE, Ferris RL, El-Naggar AK, Nikiforov YE. GLIS Rearrangement is a Genomic Hallmark of Hyalinizing Trabecular Tumor of the Thyroid Gland. Thyroid. 2019;29(2):161-173.Google Scholar
  141. 141.
    Gowrishankar S, Pai SA, Carney JA. Hyalinizing trabecular carcinoma of the thyroid gland. Histopathology. 2008;52(4):529–31.CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    McCluggage WG, Sloan JM. Hyalinizing trabecular carcinoma of thyroid gland. Histopathology. 1996;28(4):357–62.CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Molberg K, Albores-Saavedra J. Hyalinizing trabecular carcinoma of the thyroid gland. Hum Pathol. 1994;25(2):192–7.CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    Hofman V, Lassalle S, Bonnetaud C, et al. Thyroid tumours of uncertain malignant potential: frequency and diagnostic reproducibility. Virchows Arch. 2009;455(1):21–33.CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Liu Z, Zhou G, Nakamura M, et al. Encapsulated follicular thyroid tumor with equivocal nuclear changes, so-called well-differentiated tumor of uncertain malignant potential: a morphological, immunohistochemical, and molecular appraisal. Cancer Sci. 2011;102(1):288–94.CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Williams ED. Guest editorial: two proposals regarding the terminology of thyroid tumors. Int J Surg Pathol. 2000;8(3):181–3.CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Chetty R. Follicular patterned lesions of the thyroid gland: a practical algorithmic approach. J Clin Pathol. 2011;64(9):737–41.CrossRefPubMedPubMedCentralGoogle Scholar
  148. 148.
    Kakudo K, Bai Y, Liu Z, et al. Classification of thyroid follicular cell tumors: with special reference to borderline lesions. Endocr J. 2012;59(1):1–12.CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Nechifor-Boila A, Borda A, Sassolas G, et al. Thyroid tumors of uncertain malignant potential: morphologic and imunohistochemical analysis of 29 cases. Pathol Res Pract. 2015;211(4):320–5.CrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    Deeken-Draisey A, Yang GY, Gao J, et al. Anaplastic thyroid carcinoma: an epidemiologic, histologic, immunohistochemical and molecular single institution study. Hum Pathol. 2018.
  151. 151.
    Ragazzi M, Ciarrocchi A, Sancisi V, et al. Update on anaplastic thyroid carcinoma: morphological, molecular, and genetic features of the most aggressive thyroid cancer. Int J Endocrinol. 2014;2014:790834.CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Han JM, Bae Kim W, Kim TY, et al. Time trend in tumour size and characteristics of anaplastic thyroid carcinoma. Clin Endocrinol. 2012;77(3):459–64.CrossRefGoogle Scholar
  153. 153.
    Choi JY, Hwang BH, Jung KC, et al. Clinical significance of microscopic anaplastic focus in papillary thyroid carcinoma. Surgery. 2013;154(1):106–10.CrossRefPubMedPubMedCentralGoogle Scholar
  154. 154.
    Lee DY, Won JK, Lee SH, et al. Changes of clinicopathologic characteristics and survival outcomes of anaplastic and poorly differentiated thyroid carcinoma. Thyroid. 2016;26(3):404–13.CrossRefPubMedPubMedCentralGoogle Scholar
  155. 155.
    Cheuk W, Jacobson AA, Chan JK. Spindle epithelial tumor with thymus-like differentiation (SETTLE): a distinctive malignant thyroid neoplasm with significant metastatic potential. Mod Pathol. 2000;13(10):1150–5.CrossRefPubMedPubMedCentralGoogle Scholar
  156. 156.
    Grushka JR, Ryckman J, Mueller C, et al. Spindle epithelial tumor with thymus-like elements of the thyroid: a multi-institutional case series and review of the literature. J Pediatr Surg. 2009;44(5):944–8.CrossRefPubMedPubMedCentralGoogle Scholar
  157. 157.
    Papi G, Corrado S, LiVolsi VA. Primary spindle cell lesions of the thyroid gland; an overview. Am J Clin Pathol. 2006;125(Suppl):S95–123.PubMedPubMedCentralGoogle Scholar
  158. 158.
    Matoso A, Easley SE, Mangray S, et al. Spindle cell foci in the thyroid gland: an immunohistochemical analysis. Appl Immunohistochem Mol Morphol. 2011;19(5):400–7.CrossRefPubMedPubMedCentralGoogle Scholar
  159. 159.
    Wang YF, Liu B, Fan XS, et al. Thyroid carcinoma showing thymus-like elements: a clinicopathologic, immunohistochemical, ultrastructural, and molecular analysis. Am J Clin Pathol. 2015;143(2):223–33.CrossRefPubMedPubMedCentralGoogle Scholar
  160. 160.
    Ito Y, Miyauchi A, Nakamura Y, et al. Clinicopathologic significance of intrathyroidal epithelial thymoma/carcinoma showing thymus-like differentiation: a collaborative study with member Institutes of The Japanese Society of Thyroid Surgery. Am J Clin Pathol. 2007;127(2):230–6.CrossRefGoogle Scholar
  161. 161.
    Ge W, Yao YZ, Chen G, et al. Clinical analysis of 82 cases of carcinoma showing thymus-like differentiation of the thyroid. Oncol Lett. 2016;11(2):1321–6.CrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    Reimann JD, Dorfman DM, Nose V. Carcinoma showing thymus-like differentiation of the thyroid (CASTLE): a comparative study: evidence of thymic differentiation and solid cell nest origin. Am J Surg Pathol. 2006;30(8):994–1001.CrossRefGoogle Scholar
  163. 163.
    Shah AA, La Fortune K, Miller C, et al. Thyroid sclerosing mucoepidermoid carcinoma with eosinophilia: a clinicopathologic and molecular analysis of a distinct entity. Mod Pathol. 2017;30(3):329–39.CrossRefGoogle Scholar
  164. 164.
    Quiroga-Garza G, Lee JH, El-Naggar A, et al. Sclerosing mucoepidermoid carcinoma with eosinophilia of the thyroid: more aggressive than previously reported. Hum Pathol. 2015;46(5):725–31.CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Farhat NA, Faquin WC, Sadow PM. Primary mucoepidermoid carcinoma of the thyroid gland: a report of three cases and review of the literature. Endocr Pathol. 2013;24(4):229–33.CrossRefPubMedPubMedCentralGoogle Scholar
  166. 166.
    Prichard RS, Lee JC, Gill AJ, et al. Mucoepidermoid carcinoma of the thyroid: a report of three cases and postulated histogenesis. Thyroid. 2012;22(2):205–9.CrossRefPubMedPubMedCentralGoogle Scholar
  167. 167.
    Struller F, Senne M, Falch C, et al. Primary squamous cell carcinoma of the thyroid: case report and systematic review of the literature. Int J Surg Case Rep. 2017;37:36–40.CrossRefPubMedPubMedCentralGoogle Scholar
  168. 168.
    Suzuki A, Hirokawa M, Takada N, et al. Diagnostic significance of PAX8 in thyroid squamous cell carcinoma. Endocr J. 2015;62(11):991–5.CrossRefPubMedPubMedCentralGoogle Scholar
  169. 169.
    Beninato T, Kluijfhout WP, Drake FT, et al. Squamous differentiation in papillary thyroid carcinoma: a rare feature of aggressive disease. J Surg Res. 2018;223:39–45.CrossRefPubMedPubMedCentralGoogle Scholar
  170. 170.
    Au JK, Alonso J, Kuan EC, et al. Primary squamous cell carcinoma of the thyroid: a population-based analysis. Otolaryngol Head Neck Surg. 2017;157(1):25–9.CrossRefPubMedPubMedCentralGoogle Scholar
  171. 171.
    Guerra G, Cinelli M, Mesolella M, et al. Morphological, diagnostic and surgical features of ectopic thyroid gland: a review of literature. Int J Surg (London, England). 2014;12(Suppl 1):S3–11.CrossRefGoogle Scholar
  172. 172.
    Triantafyllou A, Williams MD, Angelos P, et al. Incidental findings of thyroid tissue in cervical lymph nodes: old controversy not yet resolved? Eur Arch Otorhinolaryngol. 2016;273(10):2867–75.CrossRefPubMedPubMedCentralGoogle Scholar
  173. 173.
    Mojica WD, Khoury T. Presence of the BRAF V600E point mutation in morphologically benign appearing thyroid inclusions of cervical lymph nodes. Endocr Pathol. 2006;17(2):183–9.CrossRefPubMedPubMedCentralGoogle Scholar
  174. 174.
    Kr A, Sebastian P, Somanathan T, et al. Significance of incidentally detected thyroid tissue in lymph nodes of neck dissections in patients with head and neck carcinoma. Int J Surg Pathol. 2012;20(6):564–9.CrossRefPubMedPubMedCentralGoogle Scholar
  175. 175.
    Assi A, Sironi M, Di Bella C, et al. Parasitic nodule of the right carotid triangle. Arch Otolaryngol Head Neck Surg. 1996;122(12):1409–11.CrossRefPubMedPubMedCentralGoogle Scholar
  176. 176.
    dos Santos VM, de Lima MA, Marinho EO, et al. Parasitic thyroid nodule in a patient with Hashimoto’s chronic thyroiditis. Rev Hosp Clin. 2000;55(2):65–8.CrossRefGoogle Scholar
  177. 177.
    Shimizu M, Hirokawa M, Manabe T. Parasitic nodule of the thyroid in a patient with Graves’ disease. Virchows Arch. 1999;434(3):241–4.CrossRefPubMedPubMedCentralGoogle Scholar
  178. 178.
    Baker LJ, Gill AJ, Chan C, et al. Parasitic thyroid nodules: cancer or not? Endocrinol Diabetes Metab Case Rep. 2014;2014:140027.PubMedPubMedCentralGoogle Scholar
  179. 179.
    Acquaviva G, Visani M, Repaci A, et al. Molecular pathology of thyroid tumours of follicular cells: a review of genetic alterations and their clinicopathological relevance. Histopathology. 2018;72(1):6–31.CrossRefPubMedPubMedCentralGoogle Scholar
  180. 180.
    Mon SY, Hodak SP. Molecular diagnostics for thyroid nodules: the current state of affairs. Endocrinol Metab Clin N Am. 2014;43(2):345–65.CrossRefGoogle Scholar
  181. 181.
    Haugen BR, Alexander EK, Bible KC, et al. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid. 2016;26(1):1–133.CrossRefPubMedPubMedCentralGoogle Scholar
  182. 182.
    Penna GC, Vaisman F, Vaisman M, et al. Molecular markers involved in tumorigenesis of thyroid carcinoma: focus on aggressive histotypes. Cytogenet Genome Res. 2016;150(3–4):194–207.CrossRefPubMedPubMedCentralGoogle Scholar
  183. 183.
    Cancer Genome Atlas Research N. Integrated genomic characterization of papillary thyroid carcinoma. Cell. 2014;159(3):676–90.CrossRefGoogle Scholar
  184. 184.
    Guilmette J, Nose V. Hereditary and familial thyroid tumours. Histopathology. 2018;72(1):70–81.CrossRefPubMedPubMedCentralGoogle Scholar
  185. 185.
    Laury AR, Bongiovanni M, Tille JC, et al. Thyroid pathology in PTEN-hamartoma tumor syndrome: characteristic findings of a distinct entity. Thyroid. 2011;21(2):135–44.CrossRefPubMedPubMedCentralGoogle Scholar
  186. 186.
    Cameselle-Teijeiro JM, Peteiro-Gonzalez D, Caneiro-Gomez J, et al. Cribriform-morular variant of thyroid carcinoma: a neoplasm with distinctive phenotype associated with the activation of the WNT/beta-catenin pathway. Mod Pathol. 2018;31(8):1168–79.CrossRefPubMedPubMedCentralGoogle Scholar
  187. 187.
    Jiwang L, Zhendong L, Shuchun L, et al. Clinicopathologic characteristics of familial versus sporadic papillary thyroid carcinoma. Acta Otorhinolaryngol Ital. 2015;35(4):234–42.PubMedPubMedCentralGoogle Scholar
  188. 188.
    Amin MB, Edge S, Greene F, Byrd DR, Brookland RK, Washington MK, Gershenwald JE, et al., editors. AJCC cancer staging manual. 8th ed. New York: Springer Nature; 2017.Google Scholar
  189. 189.
    Perrier ND, Brierley JD, Tuttle RM. Differentiated and anaplastic thyroid carcinoma: major changes in the American Joint Committee on Cancer eighth edition cancer staging manual. CA Cancer J Clin. 2018;68(1):55–63.CrossRefPubMedPubMedCentralGoogle Scholar
  190. 190.
    Xu B, Ghossein RA. Crucial parameters in thyroid carcinoma reporting – challenges, controversies and clinical implications. Histopathology. 2018;72(1):32–9.CrossRefPubMedPubMedCentralGoogle Scholar
  191. 191.
    Graff-Baker A, Sosa JA, Roman SA. Primary thyroid lymphoma: a review of recent developments in diagnosis and histology-driven treatment. Curr Opin Oncol. 2010;22(1):17–22.CrossRefPubMedPubMedCentralGoogle Scholar
  192. 192.
    Graff-Baker A, Roman SA, Thomas DC, et al. Prognosis of primary thyroid lymphoma: demographic, clinical, and pathologic predictors of survival in 1,408 cases. Surgery. 2009;146(6):1105–15.CrossRefPubMedPubMedCentralGoogle Scholar
  193. 193.
    Wang SA, Rahemtullah A, Faquin WC, et al. Hodgkin’s lymphoma of the thyroid: a clinicopathologic study of five cases and review of the literature. Mod Pathol. 2005;18(12):1577–84.CrossRefPubMedPubMedCentralGoogle Scholar
  194. 194.
    Stein SA, Wartofsky L. Primary thyroid lymphoma: a clinical review. J Clin Endocrinol Metab. 2013;98(8):3131–8.CrossRefPubMedPubMedCentralGoogle Scholar
  195. 195.
    Elliott DD, Sellin R, Egger JF, et al. Langerhans cell histiocytosis presenting as a thyroid gland mass. Ann Diagn Pathol. 2005;9(5):267–74.CrossRefPubMedPubMedCentralGoogle Scholar
  196. 196.
    Lollar K, Farrag TY, Cao D, et al. Langerhans cell histiocytosis of the thyroid gland. Am J Otolaryngol. 2008;29(3):201–4.CrossRefPubMedPubMedCentralGoogle Scholar
  197. 197.
    Patten DK, Wani Z, Tolley N. Solitary Langerhans histiocytosis of the thyroid gland: a case report and literature review. Head Neck Pathol. 2012;6(2):279–89.CrossRefPubMedPubMedCentralGoogle Scholar
  198. 198.
    Kobayashi M, Tojo A. Langerhans cell histiocytosis in adults: advances in pathophysiology and treatment. Cancer Sci. 2018.
  199. 199.
    Straccia P, Mosseri C, Brunelli C, et al. Diagnosis and treatment of metastases to the thyroid gland: a meta-analysis. Endocr Pathol. 2017;28(2):112–20.CrossRefPubMedPubMedCentralGoogle Scholar
  200. 200.
    Nixon IJ, Coca-Pelaz A, Kaleva AI, et al. Metastasis to the thyroid gland: a critical review. Ann Surg Oncol. 2017;24(6):1533–9.CrossRefPubMedPubMedCentralGoogle Scholar
  201. 201.
    Pusztaszeri M, Wang H, Cibas ES, et al. Fine-needle aspiration biopsy of secondary neoplasms of the thyroid gland: a multi-institutional study of 62 cases. Cancer Cytopathol. 2015;123(1):19–29.CrossRefPubMedPubMedCentralGoogle Scholar
  202. 202.
    Sindoni A, Rizzo M, Tuccari G, et al. Thyroid metastases from renal cell carcinoma: review of the literature. Sci World J. 2010;10:590–602.CrossRefGoogle Scholar
  203. 203.
    Lievre A, Leboulleux S, Boige V, et al. Thyroid metastases from colorectal cancer: the Institut Gustave Roussy experience. Eur J Cancer (Oxford, England: 1990). 2006;42(12):1756–9.CrossRefGoogle Scholar
  204. 204.
    Mirallie E, Rigaud J, Mathonnet M, et al. Management and prognosis of metastases to the thyroid gland. J Am Coll Surg. 2005;200(2):203–7.CrossRefPubMedPubMedCentralGoogle Scholar
  205. 205.
    Ahuja A, Ng CF, King W, et al. Solitary cystic nodal metastasis from occult papillary carcinoma of the thyroid mimicking a branchial cyst: a potential pitfall. Clin Radiol. 1998;53(1):61–3.CrossRefPubMedPubMedCentralGoogle Scholar
  206. 206.
    Jeon SJ, Kim E, Park JS, et al. Diagnostic benefit of thyroglobulin measurement in fine-needle aspiration for diagnosing metastatic cervical lymph nodes from papillary thyroid cancer: correlations with US features. Korean J Radiol. 2009;10(2):106–11.CrossRefPubMedPubMedCentralGoogle Scholar
  207. 207.
    Pazaitou-Panayiotou K, Alevizaki M, Boudina M, et al. Cervical masses as manifestation of papillary thyroid carcinomas </=10 mm in diameter, in patients with unknown thyroid disease. Thyroid Res. 2008;1(1):8.CrossRefPubMedPubMedCentralGoogle Scholar
  208. 208.
    Verge J, Guixa J, Alejo M, et al. Cervical cystic lymph node metastasis as first manifestation of occult papillary thyroid carcinoma: report of seven cases. Head Neck. 1999;21(4):370–4.CrossRefPubMedPubMedCentralGoogle Scholar
  209. 209.
    Lloyd RV, Buehler D, Khanafshar E. Papillary thyroid carcinoma variants. Head Neck Pathol. 2011;5(1):51–6.CrossRefPubMedPubMedCentralGoogle Scholar
  210. 210.
    Matias-Guiu X, De Lellis R. Medullary thyroid carcinoma: a 25-year perspective. Endocr Pathol. 2014;25(1):21–9.CrossRefPubMedPubMedCentralGoogle Scholar
  211. 211.
    Papp S, Asa SL. When thyroid carcinoma goes bad: a morphological and molecular analysis. Head Neck Pathol. 2015;9(1):16–23.CrossRefPubMedPubMedCentralGoogle Scholar
  212. 212.
    Talbott I, Wakely PE Jr. Undifferentiated (anaplastic) thyroid carcinoma: practical immunohistochemistry and cytologic look-alikes. Semin Diagn Pathol. 2015;32(4):305–10.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Duke Health, Duke University Medical Center, Department of Pathology, Section of Head and Neck and Endocrine PathologyDurhamUSA
  2. 2.The University of Texas MD Anderson Cancer Center, Department of Pathology, Head and Neck SectionHoustonUSA

Personalised recommendations