Stem Cells Have More Than Five Senses

  • Amene Saghazadeh
  • Reza Khaksar
  • Nima RezaeiEmail author


The application of both embryonic stem cells and adult stem cells has been subject to certain restrictions that could be removed with the development of induced pluripotent stem (iPS) cells. The induction of pluripotency is a complex process through which the effects of (a) exogenous and endogenous transcription factors and their interaction with each other and with molecular components of chromosome, (b) matrix elasticity and nuclear plasticity, and (c) intrinsic and extrinsic mechanisms of the asymmetric cell divisions are pooled and will be pronounced as the stem cell fate. Also, stem cells strongly feel about the effects of both ionizing and nonionizing radiation. The effects are dose-dependent and include cell death, mutagenesis, and tumorigenesis. Nevertheless, stem cells have been proven to play a role in the repair of radiation-induced multiorgan damage. Understanding the biology of stem cells, particularly iPS cells, and their biophysical behavior, especially upon exposure to radiation, helps to make further advances in both the field of regenerative medicine and disease treatment and prevention.


Induced pluripotent stem cells iPSC Regenerative medicine Radiation Sixth sense 


  1. 1.
    Mason C, Dunnill P. A brief definition of regenerative medicine. Regen Med. 2008;3:1.PubMedCrossRefGoogle Scholar
  2. 2.
    Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414(6859):105–11.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Lutolf MP, Gilbert PM, Blau HM. Designing materials to direct stem-cell fate. Nature. 2009;462(7272):433–41.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Ramalho-Santos M, Yoon S, Matsuzaki Y, Mulligan RC, Melton DA. “Stemness”: transcriptional profiling of embryonic and adult stem cells. Science. 2002;298(5593):597–600.PubMedCrossRefGoogle Scholar
  5. 5.
    Amariglio N, Hirshberg A, Scheithauer BW, Cohen Y, Loewenthal R, Trakhtenbrot L, et al. Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient. PLoS Med. 2009;6(2):e1000029.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.CrossRefGoogle Scholar
  7. 7.
    Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318(5858):1917–20.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72.PubMedCrossRefGoogle Scholar
  9. 9.
    Discher DE, Mooney DJ, Zandstra PW. Growth factors, matrices, and forces combine and control stem cells. Science. 2009;324(5935):1673–7.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Morrison SJ, Shah NM, Anderson DJ. Regulatory mechanisms in stem cell biology. Cell. 1997;88(3):287–98.PubMedCrossRefGoogle Scholar
  11. 11.
    Eminli S, Utikal J, Arnold K, Jaenisch R, Hochedlinger K. Reprogramming of neural progenitor cells into induced pluripotent stem cells in the absence of exogenous Sox2 expression. Stem Cells. 2008;26(10):2467–74.PubMedCrossRefGoogle Scholar
  12. 12.
    Kubicek S, O’Sullivan RJ, August EM, Hickey ER, Zhang Q, Teodoro Miguel L, et al. Reversal of H3K9me2 by a small-molecule inhibitor for the G9a histone methyltransferase. Mol Cell. 2007;25(3):473–81.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Thomas G, Chung M, Cohen CJ. A dihydropyridine (Bay k 8644) that enhances calcium currents in guinea pig and calf myocardial cells. A new type of positive inotropic agent. Circ Res. 1985;56(1):87–96.PubMedCrossRefGoogle Scholar
  14. 14.
    Shi Y, Desponts C, Do JT, Hahm HS, Schöler HR, Ding S. Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cell. 2008;3(5):568–74.PubMedCrossRefGoogle Scholar
  15. 15.
    Chaffey N, Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Molecular biology of the cell. 4th edn. Annals of Botany. 2003;91(3), 401.Google Scholar
  16. 16.
    Buxboim A, Ivanovska IL, Discher DE. Matrix elasticity, cytoskeletal forces and physics of the nucleus: how deeply do cells ‘feel’outside and in? J Cell Sci. 2010;123(3):297–308.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Guilak F, Cohen DM, Estes BT, Gimble JM, Liedtke W, Chen CS. Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell. 2009;5(1):17–26.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Gilbert PM, Havenstrite KL, Magnusson KEG, Sacco A, Leonardi NA, Kraft P, et al. Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science. 2010;329(5995):1078–81.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Saha K, Keung AJ, Irwin EF, Li Y, Little L, Schaffer DV, et al. Substrate modulus directs neural stem cell behavior. Biophys J. 2008;95(9):4426–38.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126(4):677–89.PubMedCrossRefGoogle Scholar
  21. 21.
    Pajerowski JD, Dahl KN, Zhong FL, Sammak PJ, Discher DE. Physical plasticity of the nucleus in stem cell differentiation. Proc Natl Acad Sci. 2007;104(40):15619–24.PubMedCrossRefGoogle Scholar
  22. 22.
    Chowdhury F, Na S, Li D, Poh Y-C, Tanaka TS, Wang F, et al. Material properties of the cell dictate stress-induced spreading and differentiation in embryonic stem cells. Nat Mater. 2010;9(1):82–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Watt FM, Hogan BLM. Out of Eden: stem cells and their niches. Science. 2000;287(5457):1427.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Morrison SJ, Kimble J. Asymmetric and symmetric stem-cell divisions in development and cancer. Nature. 2006;441(7097):1068–74.PubMedCrossRefGoogle Scholar
  25. 25.
    Ng K-H. Non-ionizing radiations–sources, biological effects, emissions and exposures. In: Proceedings of the international conference on non-ionizing radiation at UNITEN. Oct 20 2003.Google Scholar
  26. 26.
    Kwee S, Raskmark P. Changes in cell proliferation due to environmental non-ionizing radiation 1. ELF electromagnetic fields. Bioelectrochem Bioenerg. 1995;36(2):109–14.CrossRefGoogle Scholar
  27. 27.
    Kwee S, Raskmark P. Changes in cell proliferation due to environmental non-ionizing radiation: 2. Microwave radiation. Bioelectrochem Bioenergetics. 1998;44(2):251–5.CrossRefGoogle Scholar
  28. 28.
    Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci. 2001;98(9):5116–21.PubMedCrossRefGoogle Scholar
  29. 29.
    Alvarado AS. Planarian regeneration: its end is its beginning. Cell. 2006;124(2):241–5.CrossRefGoogle Scholar
  30. 30.
    Reddien PW, Alvarado AS. Fundamentals of planarian regeneration. Annu Rev Cell Dev Biol. 2004;20:725–57.PubMedCrossRefGoogle Scholar
  31. 31.
    Hayashi T, Asami M, Higuchi S, Shibata N, Agata K. Isolation of planarian X-ray-sensitive stem cells by fluorescence-activated cell sorting. Develop Growth Differ. 2006;48(6):371–80.CrossRefGoogle Scholar
  32. 32.
    Brewen JG, Preston RJ. Chromosome aberrations as a measure of mutagenesis: comparisons in vitro and in vivo and in somatic and germ cells. Environ Health Perspect. 1973;6:157.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Luft S, Pignalosa D, Nasonova E, Arrizabalaga O, Helm A, Durante M, et al. Fate of D3 mouse embryonic stem cells exposed to X-rays or carbon ions. Mutat Res/Genet Toxicol Environ Mutagen. 2014;760:56–63.CrossRefGoogle Scholar
  34. 34.
    Thomas JW, LaMantia C, Magnuson T. X-ray-induced mutations in mouse embryonic stem cells. Proc Natl Acad Sci. 1998;95(3):1114–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Brewen JG, Preston RJ, Jones KP, Gosslee DG. Genetic hazards of ionizing radiations: cytogenetic extrapolations from mouse to man. Mutat Res/Genet Toxicol Environ Mutagen. 1973;17(2):245–54.CrossRefGoogle Scholar
  36. 36.
    Baskar R, Lee KA, Yeo R, Yeoh K-W. Cancer and radiation therapy: current advances and future directions. Int J Med Sci. 2012;9(3):193–9.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Leon MB, Teirstein PS, Moses JW, Tripuraneni P, Lansky AJ, Jani S, et al. Localized intracoronary gamma-radiation therapy to inhibit the recurrence of restenosis after stenting. N Engl J Med. 2001;344(4):250–6.PubMedCrossRefGoogle Scholar
  38. 38.
    Cmielova J, Havelek R, Soukup T, Jiroutová A, Visek B, Suchánek J, et al. Gamma radiation induces senescence in human adult mesenchymal stem cells from bone marrow and periodontal ligaments. Int J Radiat Biol. 2012;88(5):393–404.PubMedCrossRefGoogle Scholar
  39. 39.
    Nicolay NH, Sommer E, Lopez R, Wirkner U, Trinh T, Sisombath S, et al. Mesenchymal stem cells retain their defining stem cell characteristics after exposure to ionizing radiation. Int J Radiat Oncol Biol Phys. 2013;87(5):1171–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Tseng BP, Lan ML, Tran KK, Acharya MM, Giedzinski E, Limoli CL. Characterizing low dose and dose rate effects in rodent and human neural stem cells exposed to proton and gamma irradiation. Redox Biol. 2013;1(1):153–62.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Daynac M, Chicheportiche A, Pineda JR, Gauthier LR, Boussin FD, Mouthon M-A. Quiescent neural stem cells exit dormancy upon alteration of GABA A R signaling following radiation damage. Stem Cell Res. 2013;11(1):516–28.PubMedCrossRefGoogle Scholar
  42. 42.
    Chapel A, Bertho JM, Bensidhoum M, Fouillard L, Young RG, Frick J, et al. Mesenchymal stem cells home to injured tissues when co-infused with hematopoietic cells to treat a radiation-induced multi-organ failure syndrome. J Gene Med. 2003;5(12):1028–38.PubMedCrossRefGoogle Scholar
  43. 43.
    Sheline GE. Radiation therapy of brain tumors. Cancer. 1977;39(S2):873–81.PubMedCrossRefGoogle Scholar
  44. 44.
    Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444(7120):756–60.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Patchell RA, Tibbs PA, Regine WF, et al. Postoperative radiotherapy in the treatment of single metastases to the brain: a randomized trial. JAMA. 1998;280(17):1485–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN, et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature. 2009;458(7239):780–3.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Bagchi D, Bagchi M, Hassoun EA, Stohs SJ. In vitro and in vivo generation of reactive oxygen species, DNA damage and lactate dehydrogenase leakage by selected pesticides. Toxicology. 1995;104(1):129–40.PubMedCrossRefGoogle Scholar
  48. 48.
    Halliwell B. Reactive oxygen species in living systems: source, biochemistry, and role in human disease. Am J Med. 1991;91(3):S14–22.CrossRefGoogle Scholar
  49. 49.
    Spangrude GJ, Heimfeld S, Weissman IL. Purification and characterization of mouse hematopoietic stem cells. Science. 1988;241(4861):58–62.PubMedCrossRefGoogle Scholar
  50. 50.
    Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med. 1996;183(4):1797–806.PubMedCrossRefGoogle Scholar
  51. 51.
    Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. 2002;418(6893):41–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Krewski D, Lubin JH, Zielinski JM, Alavanja M, Catalan VS, Field RW, et al. Residential radon and risk of lung cancer: a combined analysis of 7 North American case-control studies. Epidemiology. 2005;16(2):137–45.PubMedCrossRefGoogle Scholar
  53. 53.
    Howe GR, Nair RC, Newcombe HB, Miller AB, Abbatt JD. Lung cancer mortality (1950–80) in relation to radon daughter exposure in a cohort of workers at the Eldorado Beaverlodge uranium mine. J Natl Cancer Inst. 1986;77(2):357–62.PubMedGoogle Scholar
  54. 54.
    Hornung RW, Meinhardt TJ. Quantitative risk assessment of lung cancer in US uranium miners. Health Phys. 1987;52(4):417–30.PubMedCrossRefGoogle Scholar
  55. 55.
    Darby S, Hill D, Auvinen A, Barros-Dios JM, Baysson H, Bochicchio F, et al. Radon in homes and risk of lung cancer: collaborative analysis of individual data from 13 European case-control studies. BMJ. 2005;330(7485):223.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Zhou H, Randers-Pehrson G, Waldren CA, Vannais D, Hall EJ, Hei TK. Induction of a bystander mutagenic effect of alpha particles in mammalian cells. Proc Natl Acad Sci. 2000;97(5):2099–104.PubMedCrossRefGoogle Scholar
  57. 57.
    Azzam EI, de Toledo SM, Gooding T, Little JB. Intercellular communication is involved in the bystander regulation of gene expression in human cells exposed to very low fluences of alpha particles. Radiat Res. 1998;150(5):497–504.PubMedCrossRefGoogle Scholar
  58. 58.
    Kadhim MA, Marsden SJ, Malcolmson AM, Folkard M, Goodhead DT, Prise KM, et al. Long-term genomic instability in human lymphocytes induced by single-particle irradiation. Radiat Res. 2001;155(1):122–6.PubMedCrossRefGoogle Scholar
  59. 59.
    Little JB, Nagasawa H, Pfenning T, Vetrovs H. Radiation-induced genomic instability: delayed mutagenic and cytogenetic effects of X rays and alpha particles. Radiat Res. 1997;148(4):299–307.PubMedCrossRefGoogle Scholar
  60. 60.
    Watson GE. Long-term in vivo transmission of alpha-particle-induced chromosomal instability in murine haemopoietic cells. Int J Radiat Biol. 1996;69(2):175–82.PubMedCrossRefGoogle Scholar
  61. 61.
    Sokolov MV, Neumann RD. Radiation-induced bystander effects in cultured human stem cells. PLoS One. 2010;5(12):e14195.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Jurcic JG, Larson SM, Sgouros G, McDevitt MR, Finn RD, Divgi CR, et al. Targeted α particle immunotherapy for myeloid leukemia. Blood. 2002;100(4):1233–9.PubMedGoogle Scholar
  63. 63.
    Sgouros G, Roeske JC, McDevitt MR, Palm S, Allen BJ, Fisher DR, et al. MIRD Pamphlet No. 22 (abridged): radiobiology and dosimetry of α-particle emitters for targeted radionuclide therapy. J Nucl Med. 2010;51(2):311–28.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Hobbs RF, Song H, Watchman CJ, Bolch WE, Aksnes A-K, Ramdahl T, et al. A bone marrow toxicity model for 223Ra alpha-emitter radiopharmaceutical therapy. Phys Med Biol. 2012;57(10):3207.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Kadhim MA, Macdonald DA, Goodhead DT, Lorimore SA, Marsden SJ, Wright EG. Transmission of chromosomal instability after plutonium alpha-particle irradiation. Nature. 1992;355(6362):738–40.PubMedCrossRefGoogle Scholar
  66. 66.
    Littlefield LG, Travis LB, Sayer AM, Voelz GL, Jensen RH, Boice JD Jr. Cumulative genetic damage in hematopoietic stem cells in a patient with a 40-year exposure to alpha particles emitted by thorium dioxide. Radiat Res. 1997;148(2):135–44.PubMedCrossRefGoogle Scholar
  67. 67.
    Anderson M, et al. Complex chromosome aberrations in peripheral blood lymphocytes as a potential biomarker of exposure to high-LET alpha-particles. Int J Radiat Biol. 2000;76(1):31–42.PubMedCrossRefGoogle Scholar
  68. 68.
    Saghazadeh A, Saghazadeh M, Rezaei N. Immunology of cutaneous tumors and immunotherapy for melanoma. In: Rezaei N, editor. Cancer immunology. Berlin/Heidelberg: Springer; 2015.Google Scholar
  69. 69.
    Miyauchi-Hashimoto H, Tanaka K, Horio T. Enhanced inflammation and immunosuppression by ultraviolet radiation in xeroderma pigmentosum group A (XPA) model mice. J Invest Dermatol. 1996;107(3):343–8.PubMedCrossRefGoogle Scholar
  70. 70.
    Gennery AR, Cant AJ, Jeggo PA. Immunodeficiency associated with DNA repair defects. Clin Exp Immunol. 2000;121(1):1–7.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Epstein FH, Gilchrest BA, Eller MS, Geller AC, Yaar M. The pathogenesis of melanoma induced by ultraviolet radiation. N Engl J Med. 1999;340(17):1341–8.CrossRefGoogle Scholar
  72. 72.
    Gniadecki R, Hansen M, Wulf HC. Two pathways for induction of apoptosis by ultraviolet radiation in cultured human keratinocytes. J Investig Dermatol. 1997;109(2):163–9.PubMedCrossRefGoogle Scholar
  73. 73.
    Rappold I, Iwabuchi K, Date T, Chen J. Tumor suppressor p53 binding protein 1 (53BP1) is involved in DNA damage–signaling pathways. J Cell Biol. 2001;153(3):613–20.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Markovà E, Malmgren LOG, Belyaev IY. Microwaves from mobile phones inhibit 53BP1 focus formation in human stem cells more strongly than in differentiated cells: possible mechanistic link to cancer risk. Environ Health Perspect. 2010;118(3):394–9.PubMedCrossRefGoogle Scholar
  75. 75.
    Czyz J, Guan K, Zeng Q, Nikolova T, Meister A, Schoenborn F, et al. High frequency electromagnetic fields (GSM signals) affect gene expression levels in tumor suppressor p53-deficient embryonic stem cells. Bioelectromagnetics. 2004;25(4):296–307.PubMedCrossRefGoogle Scholar
  76. 76.
    Rossi L, Salvestrini V, Ferrari D, Di Virgilio F, Lemoli RM. The sixth sense: hematopoietic stem cells detect danger through purinergic signaling. Blood. 2012;120(12):2365–75.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Amene Saghazadeh
    • 1
    • 2
  • Reza Khaksar
    • 2
  • Nima Rezaei
    • 3
    • 4
    • 5
    Email author
  1. 1.Molecular Immunology Research Center, Children’s Medical CenterTehran University of Medical SciencesTehranIran
  2. 2.MetaCognition Interest Group (MCIG), Universal Scientific Education and Research Network (USERN)TehranIran
  3. 3.Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical SciencesTehranIran
  4. 4.Department of Immunology, School of MedicineTehran University of Medical SciencesTehranIran
  5. 5.Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN)TehranIran

Personalised recommendations