Advertisement

Neurophysiology of Visual Perception

  • Mahsa Mayeli
Chapter

Abstract

As the richest sensory modality in human beings, vision and visual perception have always been the center of attention for numerous studies. In this chapter, we aim to put together the scattered literature on human visual perception and investigate the magnificent act of transforming a two-dimensional optical input into a three-dimensional reconstruction of the world outside. Herein, the literature is reviewed regarding various aspects of this perceptual phenomenon, starting with a brief introduction toward the neuroanatomical properties of the visual system and proceeding to central regions and pathways in charge of modifying and directing the visual input to pass through the three-dimensional perceptual operations. We move forward by investigating various aspects of object recognition including the perception of form, space, and motion. Moreover, important processes of adaption and gaze control are discussed in the section regarding the role of eye movement in forming perception. Considering the high evolutionary value of face perception, a separate section is dedicated to studying this aspect. After an overall evaluation of neural coding and the constructive nature of visual perception, we conclude with a section on computer vision and future directions.

Keywords

Neurophysiology Space Vision Visual perception 

References

  1. 1.
    Kolb H. Gross anatomy of the eye. In Webvision: The Organization of the Retina and Visual System [Internet]. University of Utah Health Sciences Center; 2007.Google Scholar
  2. 2.
    Curcio CA, Allen KA. Topography of ganglion cells in human retina. J Comp Neurol. 1990;  https://doi.org/10.1002/cne.903000103.
  3. 3.
    Tamraz JC, Outin-Tamraz C, Saban R. MR imaging anatomy of the optic pathways. Radiol Clin N Am. 1999;  https://doi.org/10.1016/S0033-8389(05)70076-2.
  4. 4.
    Ungerleider LG, Haxby JV. “What” and “where” in the human brain. Curr Opin Neurobiol. 1994;4:157–65.CrossRefGoogle Scholar
  5. 5.
    Kersten D, Yuille A. Bayesian models of object perception. Curr Opin Neurobiol. 2003;13:150–8.CrossRefGoogle Scholar
  6. 6.
    Shimojo S, Paradiso M, Fujita I. What visual perception tells us about mind and brain. Proc Natl Acad Sci. 2001;  https://doi.org/10.1073/pnas.221383698.
  7. 7.
    Deyoe EA, Carmant GJ, Bandettinit P, Glickman S, Wieser J, Cox R, Miller D, Neitz J. Mapping striate and extrastriate visual areas in human cerebral cortex. Neurobiology. 1996;93:2382–6.Google Scholar
  8. 8.
    Roland PE, Gulyás B. Visual imagery and visual representation. Trends Neurosci. 1994;  https://doi.org/10.1016/0166-2236(94)90057-4.
  9. 9.
    Hirschtt J, Delapazv RL, Relkin NR, Victor J, Kimt K, Lit T, Bordent P, Rubinii N, Shapley R. Illusory contours activate specific regions in human visual cortex: evidence from functional magnetic resonance imaging. Neurobiol Commun by James E Rothman, Meml Sloan-Kettering Cancer Cent. 1995;92:6469–73.Google Scholar
  10. 10.
    Mountcastle VB. The columnar organization of the neocortex. Brain. 1997;  https://doi.org/10.1093/brain/120.4.701.
  11. 11.
    Grill-Spector K, Kushnir T, Hendler T, Edelman S, Itzchak Y, Malach R. A sequence of object-processing stages revealed by fMRI in the human occipital lobe. Hum Brain Mapp. 1998;  https://doi.org/10.1002/(SICI)1097-0193(1998)6:4<316::AID-HBM9>3.0.CO;2-6.
  12. 12.
    Kosslyn SM, Thompson WL, Klm IJ, Alpert NM. Topographical representations of mental images in primary visual cortex. Nature. 1995;  https://doi.org/10.1038/378496a0.
  13. 13.
    Kourtzi Z, Connor CE. Neural representations for object perception: structure, category, and adaptive coding. Annu Rev Neurosci. 2011;  https://doi.org/10.1146/annurev-neuro-060909-153218.
  14. 14.
    Grill-Spector K, Knouf N, Kanwisher N. The fusiform face area subserves face perception, not generic within-category identification. Nat Neurosci. 2004;  https://doi.org/10.1038/nn1224.
  15. 15.
    DiCarlo JJ, Zoccolan D, Rust NC. How does the brain solve visual object recognition? Neuron. 2012;  https://doi.org/10.1016/j.neuron.2012.01.010.
  16. 16.
    Ishai A, Ungerleider LG, Martin A, Schouten JL, Haxby JV. Distributed representation of objects in the human ventral visual pathway. Proc Natl Acad Sci. 1999;  https://doi.org/10.1073/pnas.96.16.9379.
  17. 17.
    Malach R, Levy I, Hasson U. The topography of high-order human object areas. Trends in cognitive sciences. 2002;6(4):176–184.Google Scholar
  18. 18.
    Livingstone M, Hubel D. Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science. 1988;  https://doi.org/10.1126/science.3283936.
  19. 19.
    Jessell T, Siegelbaum S, Hudspeth AJ. Principles of neural science (Vol. 4). Kandel ER, Schwartz JH, Jessell TM, editers. Department of Biochemistry and Molecular Biophysics. New York: McGraw-hill; 2000. pp. 1227–1246Google Scholar
  20. 20.
    Neri P, Heeger DJ. Spatiotemporal mechanisms for detecting and identifying image features in human vision. Nat Neurosci. 2002;  https://doi.org/10.1038/nn886.
  21. 21.
    Ostwald D, Lam JM, Li S, Kourtzi Z. Neural coding of global form in the human visual cortex. J Neurophysiol. 2008;  https://doi.org/10.1152/jn.01307.2007.
  22. 22.
    Rucci M, Victor JD. The unsteady eye: an information processing stage, not a bug. Trends Neurosci.  https://doi.org/10.1016/j.tins.2015.01.005.
  23. 23.
    Grossman ED, Blake R. Brain areas active during visual perception of biological motion. Soc Neurosci Key Readings. 2013;  https://doi.org/10.4324/9780203496190.
  24. 24.
    Mcinnis MG, Assari S, Kamali M, et al. Cohort profile: the Heinz C. Prechter longitudinal study of bipolar disorder. Int J Epidemiol. 47(1):28.Google Scholar
  25. 25.
    Allison T, Puce A, McCarthy G. Social perception from visual cues: role of the STS region. Trends Cogn Sci. 2000;4:267–78.CrossRefGoogle Scholar
  26. 26.
    Stocker AA, Simoncelli EP. Noise characteristics and prior expectations in human visual speed perception. Nat Neurosci. 2006;  https://doi.org/10.1038/nn1669.
  27. 27.
    David RA. Control of eye movements. Compr Physiol. 2011;2(Part 2):1275–1320.Google Scholar
  28. 28.
    Grosbras MH, Laird AR, Paus T. Cortical regions involved in eye movements, shifts of attention, and gaze perception. Hum Brain Mapp. 2005;  https://doi.org/10.1002/hbm.20145.
  29. 29.
    Grosbras M-H, Paus T. Transcranial magnetic stimulation of the human frontal eye field: effects on visual perception and attention. J Cogn Neurosci. 2002;14:1109–20.CrossRefGoogle Scholar
  30. 30.
    Lettvin JY, Maturana HR, Maturana HR, Mcculloch WS, Pitts WH. What the frog’s eye tells the frog’s brain. Proc IRE. 1959;  https://doi.org/10.1109/JRPROC.1959.287207.
  31. 31.
    Martinez-Conde S, Macknik SL, Hubel DH. The role of fixational eye movements in visual perception. Nat Rev Neurosci. 2004;5:229–40.CrossRefGoogle Scholar
  32. 32.
    Engbert R. Microsaccades: a microcosm for research on oculomotor control, attention, and visual perception. Prog Brain Res. 2006;  https://doi.org/10.1016/S0079-6123(06)54009-9.
  33. 33.
    Martinez-Conde S, Otero-Millan J, MacKnik SL. The impact of microsaccades on vision: towards a unified theory of saccadic function. Nat Rev Neurosci. 2013;  https://doi.org/10.1038/nrn3405.
  34. 34.
    Henderson JM. Human gaze control during real-world scene perception. Trends Cogn Sci. 2003;  https://doi.org/10.1016/j.tics.2003.09.006.
  35. 35.
    Hoffman EA, Haxby JV. Distinct representations of eye gaze and identity in the distributed human neural system for face perception. Nat Neurosci. 2000;3(1):80.CrossRefGoogle Scholar
  36. 36.
    Haxby JV, Hoffman EA, Gobbini MI. The distributed human neural system for face perception. Trends Cogn Sci. 2000;  https://doi.org/10.1016/S1364-6613(00)01482-0.
  37. 37.
    Kanwisher N, Yovel G. The fusiform face area: a cortical region specialized for the perception of faces. Philos Trans R Soc B Biol Sci. 2006;  https://doi.org/10.1098/rstb.2006.1934.
  38. 38.
    Taubert J, Alais D, Burr D. Different coding strategies for the perception of stable and changeable facial attributes. Sci Rep. 2016;  https://doi.org/10.1038/srep32239.
  39. 39.
    Felleman DJ, Van Essen DC. Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex. 1991;1:1–47.CrossRefGoogle Scholar
  40. 40.
    Frégnac Y, Bathellier B. Cortical correlates of low-level perception: from neural circuits to percepts. Neuron. 2015;  https://doi.org/10.1016/j.neuron.2015.09.041.
  41. 41.
    VanRullen R. The continuous wagon wheel illusion is associated with changes in electroencephalogram power at 13 Hz. J Neurosci. 2006;  https://doi.org/10.1523/JNEUROSCI.4654-05.2006.
  42. 42.
    Oliva A, Torralba A. The role of context in object recognition. Trends Cogn Sci. 2007;  https://doi.org/10.1016/j.tics.2007.09.009.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mahsa Mayeli
    • 1
    • 2
    • 3
  1. 1.Students’ Scientific Research CenterTehran University of Medical SciencesTehranIran
  2. 2.NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN)TehranIran
  3. 3.MetaCognition Interest Group (MCIG), Universal Scientific Education and Research Network (USERN)TehranIran

Personalised recommendations