Early Life Nutrition and Non Communicable Disease

  • Motahar Heidari-Beni
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1121)


The origin of some non communicable disease (NCDs) is in early life. Evidence has shown that early life nutrition is associated with the risk of developing chronic non communicable diseases. Pregnancy and infancy are the most critical stages that influence the risks of NCDs in childhood and adult life. Prenatal maternal undernutrition and low birth weight lead to obesity and increase the risk factors of cardiovascular disease and diabetes later in life. Nutrition is one of the easily modifiable environmental factors that may affect outcome of pregnancy, trajectory of growth, and immune system of the fetus and infant. Healthy eating behaviors associate with prevention of weight disorders in pediatric, non communicable diseases, and deficiencies of micronutrient.


Nutrition Pregnancy Infancy Non communicable disease 


  1. 1.
    Barouki R, Gluckman PD, Grandjean P, Hanson M, Heindel JJ (2012) Developmental origins of non-communicable disease: implications for research and public health. Environ Health 11:42. PubMed PMID: 22715989. Pubmed Central PMCID: PMC3384466. Epub 2012/06/22. engPubMedPubMedCentralGoogle Scholar
  2. 2.
    Heindel JJ, Skalla LA, Joubert BR, Dilworth CH, Gray KA (2017) Review of developmental origins of health and disease publications in environmental epidemiology. Reprod Toxicol (Elmsford, NY) 68:34–48. PubMed PMID: 27871864. Epub 2016/11/23. engGoogle Scholar
  3. 3.
    Berti C, Agostoni C, Davanzo R, Hypponen E, Isolauri E, Meltzer HM et al (2017) Early-life nutritional exposures and lifelong health: immediate and long-lasting impacts of probiotics, vitamin D, and breastfeeding. Nutr Rev 75(2):83–97. PubMed PMID: 28130504. Epub 2017/01/29. engPubMedGoogle Scholar
  4. 4.
    Hanson MA, Bardsley A, De-Regil LM, Moore SE, Oken E, Poston L et al (2015) The International Federation of Gynecology and Obstetrics (FIGO) recommendations on adolescent, preconception, and maternal nutrition: “Think Nutrition First”. Int J Gynaecol Obstet 131(Suppl 4):S213–S253. PubMed PMID: 26433230. Epub 2015/10/05. engPubMedGoogle Scholar
  5. 5.
    Mitchell EA, Stewart AW, Braithwaite I, Hancox RJ, Murphy R, Wall C et al (2017) Birth weight and subsequent body mass index in children: an international cross-sectional study. Pediatr Obes 12(4):280–285. PubMed PMID: 27170099. Epub 2016/05/14. engPubMedGoogle Scholar
  6. 6.
    Feng C, Osgood ND, Dyck RF (2018) Low birth weight, cumulative obesity dose, and the risk of incident type 2 diabetes. J Diabetes Res 2018:8435762. PubMed PMID: 29541643. Pubmed Central PMCID: PMC5818910. Epub 2018/03/16. engPubMedPubMedCentralGoogle Scholar
  7. 7.
    Watkins AJ, Sirovica S, Stokes B, Isaacs M, Addison O, Martin RA (2017) Paternal low protein diet programs preimplantation embryo gene expression, fetal growth and skeletal development in mice. Biochim Biophys Acta 1863(6):1371–1381. PubMed PMID: 28189722. Epub 2017/02/13. engGoogle Scholar
  8. 8.
    Ribaroff GA, Wastnedge E, Drake AJ, Sharpe RM, Chambers TJG (2017) Animal models of maternal high fat diet exposure and effects on metabolism in offspring: a meta-regression analysis. Obes Rev 18(6):673–686. PubMed PMID: 28371083. Pubmed Central PMCID: PMC5434919. Epub 2017/04/04. engPubMedPubMedCentralGoogle Scholar
  9. 9.
    Oddy WH (2017) Breastfeeding, childhood asthma, and allergic disease. Ann Nutr Metab 70(Suppl 2):26–36. PubMed PMID: 28521318. Epub 2017/05/19. engPubMedGoogle Scholar
  10. 10.
    Bartick MC, Schwarz EB, Green BD, Jegier BJ, Reinhold AG, Colaizy TT, et al (2017) Suboptimal breastfeeding in the United States: maternal and pediatric health outcomes and costs. Matern Child Nutr 13(1). PubMed PMID: 27647492. Epub 2016/09/21. engGoogle Scholar
  11. 11.
    Piernas C, Wang D, Du S, Zhang B, Wang Z, Su C et al (2016) Obesity, non-communicable disease (NCD) risk factors and dietary factors among Chinese school-aged children. Asia Pac J Clin Nutr 25(4):826–840. PubMed PMID: 27702726. Pubmed Central PMCID: PMC5094276. Epub 2016/10/06. engPubMedPubMedCentralGoogle Scholar
  12. 12.
    Wang Z, Zou Z, Yang Z, Dong Y, Ma J (2017) Association between exposure to the Chinese famine during infancy and the risk of self-reported chronic lung diseases in adulthood: a cross-sectional study. BMJ Open 7(5):e015476. PubMed PMID: 28576899. Pubmed Central PMCID: PMC5623412. Epub 2017/06/04. engPubMedPubMedCentralGoogle Scholar
  13. 13.
    Wang N, Cheng J, Han B, Li Q, Chen Y, Xia F et al (2017) Exposure to severe famine in the prenatal or postnatal period and the development of diabetes in adulthood: an observational study. Diabetologia 60(2):262–269. PubMed PMID: 27807599. Epub 2016/11/04. engPubMedGoogle Scholar
  14. 14.
    Daraki V, Georgiou V, Papavasiliou S, Chalkiadaki G, Karahaliou M, Koinaki S et al (2015) Metabolic profile in early pregnancy is associated with offspring adiposity at 4 years of age: the Rhea pregnancy cohort Crete, Greece. PLoS One 10(5):e0126327. PubMed PMID: 25970502. Pubmed Central PMCID: PMC4430416. Epub 2015/05/15. engPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kim SY, Sharma AJ, Sappenfield W, Wilson HG, Salihu HM (2014) Association of maternal body mass index, excessive weight gain, and gestational diabetes mellitus with large-for-gestational-age births. Obstet Gynecol 123(4):737–744. PubMed PMID: 24785599. Pubmed Central PMCID: PMC4548850. Epub 2014/05/03. engPubMedPubMedCentralGoogle Scholar
  16. 16.
    Tzioumis E, Adair LS (2014) Childhood dual burden of under- and overnutrition in low- and middle-income countries: a critical review. Food Nutr Bull 35(2):230–243. PubMed PMID: 25076771. Pubmed Central PMCID: PMC4313560. Epub 2014/08/01. engPubMedPubMedCentralGoogle Scholar
  17. 17.
    Brion MJ, Ness AR, Rogers I, Emmett P, Cribb V, Davey Smith G et al (2010) Maternal macronutrient and energy intakes in pregnancy and offspring intake at 10 y: exploring parental comparisons and prenatal effects. Am J Clin Nutr 91(3):748–756. PubMed PMID: 20053880. Pubmed Central PMCID: PMC2822901. Epub 2010/01/08. engPubMedPubMedCentralGoogle Scholar
  18. 18.
    Lussana F, Painter RC, Ocke MC, Buller HR, Bossuyt PM, Roseboom TJ (2008) Prenatal exposure to the Dutch famine is associated with a preference for fatty foods and a more atherogenic lipid profile. Am J Clin Nutr 88(6):1648–1652. PubMed PMID: 19064527. Epub 2008/12/10. engPubMedGoogle Scholar
  19. 19.
    Gugusheff JR, Ong ZY, Muhlhausler BS (2015) The early origins of food preferences: targeting the critical windows of development. FASEB J 29(2):365–373. PubMed PMID: 25466884. Epub 2014/12/04. engPubMedGoogle Scholar
  20. 20.
    Langley-Evans SC (2015) Nutrition in early life and the programming of adult disease: a review. J Hum Nutr Diet 28(Suppl 1):1–14. PubMed PMID: 24479490. Epub 2014/02/01. engPubMedGoogle Scholar
  21. 21.
    Sausenthaler S, Heinrich J, Koletzko S (2011) Early diet and the risk of allergy: what can we learn from the prospective birth cohort studies GINIplus and LISAplus? Am J Clin Nutr 94(6 Suppl):2012S–2017S. PubMed PMID: 21543544. Epub 2011/05/06. engPubMedGoogle Scholar
  22. 22.
    Davies PS, Funder J, Palmer DJ, Sinn J, Vickers MH, Wall CR (2016) Early life nutrition and the opportunity to influence long-term health: an Australasian perspective. J Dev Orig Health Dis 7(5):440–448. PubMed PMID: 26810498. Epub 2016/01/27. engPubMedGoogle Scholar
  23. 23.
    Grieger JA, Wood LG, Clifton VL (2014) Antioxidant-rich dietary intervention for improving asthma control in pregnancies complicated by asthma: study protocol for a randomized controlled trial. Trials 15:108. PubMed PMID: 24708597. Pubmed Central PMCID: PMC3976556. Epub 2014/04/09. engPubMedPubMedCentralGoogle Scholar
  24. 24.
    Beckhaus AA, Garcia-Marcos L, Forno E, Pacheco-Gonzalez RM, Celedon JC, Castro-Rodriguez JA (2015) Maternal nutrition during pregnancy and risk of asthma, wheeze, and atopic diseases during childhood: a systematic review and meta-analysis. Allergy 70(12):1588–1604. PubMed PMID: 26296633. Epub 2015/08/25. engPubMedGoogle Scholar
  25. 25.
    Nauta AJ, Ben Amor K, Knol J, Garssen J, van der Beek EM (2013) Relevance of pre- and postnatal nutrition to development and interplay between the microbiota and metabolic and immune systems. Am J Clin Nutr 98(2):586S–593S. PubMed PMID: 23824726. Epub 2013/07/05. engPubMedGoogle Scholar
  26. 26.
    Palmer DJ, Sullivan T, Gold MS, Prescott SL, Heddle R, Gibson RA et al (2012) Effect of n-3 long chain polyunsaturated fatty acid supplementation in pregnancy on infants’ allergies in first year of life: randomised controlled trial. BMJ (Clinical research ed) 344:e184. PubMed PMID: 22294737. Pubmed Central PMCID: PMC3269207. Epub 2012/02/02. engGoogle Scholar
  27. 27.
    Jones AP, Palmer D, Zhang G, Prescott SL (2012) Cord blood 25-hydroxyvitamin D3 and allergic disease during infancy. Pediatrics 130(5):e1128–e1135. PubMed PMID: 23090338. Epub 2012/10/24. engPubMedGoogle Scholar
  28. 28.
    Zheng J, Xiao X, Zhang Q, Yu M (2014) DNA methylation: the pivotal interaction between early-life nutrition and glucose metabolism in later life. Br J Nutr 112(11):1850–1857. PubMed PMID: 25327140. Epub 2014/10/21. engPubMedGoogle Scholar
  29. 29.
    Thorn SR, Rozance PJ, Brown LD, Hay WW Jr (2011) The intrauterine growth restriction phenotype: fetal adaptations and potential implications for later life insulin resistance and diabetes. Semin Reprod Med 29(3):225–236. PubMed PMID: 21710398. Pubmed Central PMCID: PMC3216466. Epub 2011/06/29. engPubMedPubMedCentralGoogle Scholar
  30. 30.
    Vaiserman AM (2017) Early-life nutritional programming of type 2 diabetes: experimental and quasi-experimental evidence. Nutrients 9(3). PubMed PMID: 28273874. Pubmed Central PMCID: PMC5372899. Epub 2017/03/10. engPubMedCentralGoogle Scholar
  31. 31.
    Li Y, Ley SH, Tobias DK, Chiuve SE, VanderWeele TJ, Rich-Edwards JW et al (2015) Birth weight and later life adherence to unhealthy lifestyles in predicting type 2 diabetes: prospective cohort study. BMJ (Clinical research ed). 351:h3672. PubMed PMID: 26199273. Pubmed Central PMCID: PMC4510778. Epub 2015/07/23. engPubMedCentralGoogle Scholar
  32. 32.
    Grote V, Schiess SA, Closa-Monasterolo R, Escribano J, Giovannini M, Scaglioni S et al (2011) The introduction of solid food and growth in the first 2 y of life in formula-fed children: analysis of data from a European cohort study. Am J Clin Nutr 94(6 Suppl):1785S–1793S. PubMed PMID: 21918213. Epub 2011/09/16. engPubMedGoogle Scholar
  33. 33.
    Daniels L, Mallan KM, Fildes A, Wilson J (2015) The timing of solid introduction in an ‘obesogenic’ environment: a narrative review of the evidence and methodological issues. Aust N Z J Public Health 39(4):366–373. PubMed PMID: 26095170. Epub 2015/06/23. engPubMedGoogle Scholar
  34. 34.
    Dugas C, Kearney M, Mercier R, Perron J, Tchernof A, Marc I et al (2018) Early life nutrition, glycemic and anthropometric profiles of children exposed to gestational diabetes mellitus in utero. Early Human Dev 118:37–41. PubMed PMID: 29459222. Epub 2018/02/21. engGoogle Scholar
  35. 35.
    Fraser A, Ebrahim S, Smith GD, Lawlor DA (2008) The associations between birthweight and adult markers of liver damage and function. Paediatr Perinat Epidemiol 22(1):12–21. PubMed PMID: 18173779. Epub 2008/01/05. engPubMedGoogle Scholar
  36. 36.
    Li M, Reynolds CM, Segovia SA, Gray C, Vickers MH (2015) Developmental programming of nonalcoholic fatty liver disease: the effect of early life nutrition on susceptibility and disease severity in later life. Biomed Res Int 2015:437107. PubMed PMID: 26090409. Pubmed Central PMCID: PMC4450221. Epub 2015/06/20. engPubMedPubMedCentralGoogle Scholar
  37. 37.
    Ayonrinde OT, Oddy WH, Adams LA, Mori TA, Beilin LJ, de Klerk N et al (2017) Infant nutrition and maternal obesity influence the risk of non-alcoholic fatty liver disease in adolescents. J Hepatol 67(3):568–576. PubMed PMID: 28619255. Epub 2017/06/18. engPubMedGoogle Scholar
  38. 38.
    Amor AJ, Cofan M, Mateo-Gallego R, Cenarro A, Civeira F, Ortega E et al (2018) Dietary polyunsaturated fatty acids mediate the inverse association of stearoyl-CoA desaturase activity with the risk of fatty liver in dyslipidaemic individuals. Eur J Nutr. PubMed PMID: 29675558. Epub 2018/04/21. engGoogle Scholar
  39. 39.
    Andreas NJ, Hyde MJ, Herbert BR, Jeffries S, Santhakumaran S, Mandalia S et al (2016) Impact of maternal BMI and sampling strategy on the concentration of leptin, insulin, ghrelin and resistin in breast milk across a single feed: a longitudinal cohort study. BMJ Open 6(7):e010778. PubMed PMID: 27388351. Pubmed Central PMCID: PMC4947729. Epub 2016/07/09. engPubMedPubMedCentralGoogle Scholar
  40. 40.
    Franco JG, Lisboa PC, Lima NS, Amaral TA, Peixoto-Silva N, Resende AC et al (2013) Resveratrol attenuates oxidative stress and prevents steatosis and hypertension in obese rats programmed by early weaning. J Nutr Biochem 24(6):960–966. PubMed PMID: 22959054. Epub 2012/09/11. engPubMedGoogle Scholar
  41. 41.
    Briskiewicz BL, Barreto SM, do Amaral JF, Diniz M, Molina M, Matos SMA et al (2018) Early-life nutritional status and metabolic syndrome: gender-specific associations from a cross-sectional analysis of the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Public Health Nutr 21(8):1546–1553. PubMed PMID: 29455688. Epub 2018/02/20. engPubMedGoogle Scholar
  42. 42.
    Lee HS (2015) Impact of maternal diet on the epigenome during in utero life and the developmental programming of diseases in childhood and adulthood. Nutrients 7(11):9492–9507. PubMed PMID: 26593940. Pubmed Central PMCID: PMC4663595. Epub 2015/11/26. engPubMedPubMedCentralGoogle Scholar
  43. 43.
    Belbasis L, Savvidou MD, Kanu C, Evangelou E, Tzoulaki I (2016) Birth weight in relation to health and disease in later life: an umbrella review of systematic reviews and meta-analyses. BMC Med 14(1):147. PubMed PMID: 27677312. Pubmed Central PMCID: PMC5039803. Epub 2016/09/30. engPubMedPubMedCentralGoogle Scholar
  44. 44.
    Price R, Burdge G, Lillycrop K (2015) The link between early life nutrition and cancer risk. Curr Nutr Rep 4:6–12Google Scholar
  45. 45.
    Abiri B, Kelishadi R, Sadeghi H, Azizi-Soleiman F (2016) Effects of maternal diet during pregnancy on the risk of childhood acute lymphoblastic leukemia: a systematic review. Nutr Cancer 68(7):1065–1072. PubMed PMID: 27472187. Epub 2016/07/30. engPubMedGoogle Scholar
  46. 46.
    Farvid MS, Chen WY, Michels KB, Cho E, Willett WC, Eliassen AH (2016) Fruit and vegetable consumption in adolescence and early adulthood and risk of breast cancer: population based cohort study. BMJ. (Clinical research ed) 353:i2343PubMedPubMedCentralGoogle Scholar
  47. 47.
    Jennings BA, Willis G (2015) How folate metabolism affects colorectal cancer development and treatment; a story of heterogeneity and pleiotropy. Cancer Lett 356(2 Pt A):224–230. PubMed PMID: 24614284. Epub 2014/03/13. engPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Motahar Heidari-Beni
    • 1
  1. 1.Nutrition Department, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non Communicable DiseaseIsfahan University of Medical SciencesIsfahanIran

Personalised recommendations