Epigenetics and Common Non Communicable Disease

  • Mohammad Amin TabatabaiefarEmail author
  • Roshanak S. Sajjadi
  • Sina Narrei
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1121)


Common Non communicable diseases (NCDs), such as cardiovascular disease, cancer, schizophrenia, and diabetes, have become the major cause of death in the world. They result from an interaction between genetics, lifestyle and environmental factors. The prevalence of NCDs are increasing, and researchers hopes to find efficient strategies to predict, prevent and treat them. Given the role of epigenome in the etiology of NCDs, insight into epigenetic mechanisms may offer opportunities to predict, detect, and prevent disease long before its clinical onset.

Epigenetic alterations are exerted through several mechanisms including: chromatin modification, DNA methylation and controlling gene expression by non-coding RNAs (ncRNAs). In this chapter, we will discuss about NCDs, with focus on cancer, diabetes and schizophrenia. Different epigenetic mechanisms, categorized into two main groups DNA methylation and chromatin modifications and non-coding RNAs, will be separately discussed for these NCDs.


Epigenetics Chromatin modifications DNA methylation ncRNA Cancer Schizophrenia Diabetes 



Aberrant CpG island methylator phenotype


Chronic lymphocytic leukemia




Differential display code 3


Developmental origins of health and disease


End stage renal disease


Histone acetyltransferases


Hepatocellular carcinoma


Histone deacetyltransferases


Insulin resistance


Interferon Regulatory Factor 8


Integrin Subunit Beta 2 (ITGB2)


Long non-coding RNAs


Metastasis-associated lung adenocarcinoma transcript 1


Micro RNA


Methylome-wide association study


Non-coding RNA


Nuclear Receptor Subfamily 3 Group C Member 1


Non-small cell lung cancer


Paired box 4


Prostate cancer 3


Post transcriptional modifications


RNA interference


Squamous cell carcinoma




Type I diabetes Mellitus


Type II diabetes Mellitus




  1. 1.
    Aberg KA, Mcclay JL, Nerella S, Clark S, Kumar G, Chen W, Khachane AN, Xie L, Hudson A, Gao G (2014) Methylome-wide association study of schizophrenia: identifying blood biomarker signatures of environmental insults. JAMA Psychiatry 71:255–264PubMedPubMedCentralGoogle Scholar
  2. 2.
    Adams BD, Parsons C, Walker L, Zhang WC, Slack F (2017) Targeting noncoding RNAs in disease. J Clin Investig 127:761–771PubMedGoogle Scholar
  3. 3.
    Ahmadvand M, Noruzinia M, Fard AD, Zohour MM, Tabatabaiefar MA, Soleimani M, Kaviani S, Abroun S, Beiranvand S, Saki N, Research SC (2014) The role of epigenetics in the induction of fetal hemoglobin: a combination therapy approach. Int J Hematol Oncol Stem Cell Res 8:9PubMedPubMedCentralGoogle Scholar
  4. 4.
    Alami FM, Ahmadi M, Bazrafshan H, Tabarraei A, Khosravi A, Tabatabaiefar MA, Samaei NM (2012) Association of the TCF7L2 rs12255372 (G/T) Variant with type 2 diabetes mellitus in an Iranian population. Genet Mol Biol 35:413–417PubMedPubMedCentralGoogle Scholar
  5. 5.
    Alizadeh F, Tabatabaiefar MA, Ghadiri M, Yekaninejad MS, Jalilian N, Noori-Daloii MR (2012) Association of P1635 and P1655 polymorphisms in dysbindin (DTNBP1) gene with schizophrenia. Acta Neuropsychiatrica 24:155–159PubMedGoogle Scholar
  6. 6.
    Allis CD, Jenuwein T (2016) The molecular hallmarks of epigenetic control. Nat Rev Genet 17:487PubMedGoogle Scholar
  7. 7.
    Backofen R, Engelhardt J, Erxleben A, Fallmann J, Gruning B, Ohler U, Rajewsky N, Stadler PF (2017) RNA-bioinformatics: tools, services and databases for the analysis of RNA-based regulation. J Biotechnol 261:76–84PubMedGoogle Scholar
  8. 8.
    Barry G, Briggs J, Vanichkina D, Poth E, Beveridge N, Ratnu V, Nayler S, Nones K, Hu J, Bredy T (2014) The long non-coding RNA Gomafu is acutely regulated in response to neuronal activation and involved in schizophrenia-associated alternative splicing. Mol Psychiatry 19:486PubMedGoogle Scholar
  9. 9.
    Baylin SB, Höppener JW, De Bustros A, Steenbergh PH, Lips C, Nelkin BD (1986) DNA methylation patterns of the calcitonin gene in human lung cancers and lymphomas. Cancer Res 46:2917–2922PubMedGoogle Scholar
  10. 10.
    Baylin SB, Jones PA (2011) A decade of exploring the cancer epigenome – biological and translational implications. Nat Rev Cancer 11:726PubMedPubMedCentralGoogle Scholar
  11. 11.
    Baylin SB, Jones PA (2016) epigenetic determinants of cancer. Cold Spring Harb Perspect Biol 8:A019505PubMedPubMedCentralGoogle Scholar
  12. 12.
    Bernstein BE, Meissner A, Lander ES (2007) The mammalian epigenome. Cell 128:669–681PubMedGoogle Scholar
  13. 13.
    Bhattacharjee D, Shenoy S, Bairy KL (2016) DNA methylation and chromatin remodeling: the blueprint of cancer epigenetics. Scientifica 2016:6072357PubMedPubMedCentralGoogle Scholar
  14. 14.
    Bishop KS, Ferguson LRJN (2015) The interaction between epigenetics, nutrition and the development of cancer. Nutrients 7:922–947PubMedPubMedCentralGoogle Scholar
  15. 15.
    Bussemakers MJ, Van Bokhoven A, Verhaegh GW, Smit FP, Karthaus HF, Schalken JA, Debruyne FM, Ru N, Isaacs WB (1999) DD3: a new prostate-specific gene, highly overexpressed in prostate cancer. Cancer Res 59:5975–5979PubMedGoogle Scholar
  16. 16.
    Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6:857Google Scholar
  17. 17.
    Carter G, Miladinovic B, Patel AA, Deland L, Mastorides S, Patel NA (2015) Circulating long noncoding RNA GAS5 levels are correlated to prevalence of type 2 diabetes mellitus. BBA Clin 4:102–107PubMedPubMedCentralGoogle Scholar
  18. 18.
    Cebola I, Pasquali L (2015) Non-coding genome functions in diabetes. J Mol Endocrinol 15:0197Google Scholar
  19. 19.
    Chan AS, Thorner PS, Squire JA, Zielenska M (2002) Identification of a novel gene NCRMs on chromosome 12q21 with differential expression between rhabdomyosarcoma subtypes. Oncogene 21:3029PubMedGoogle Scholar
  20. 20.
    Chang Y-N, Zhang K, Hu Z-M, Qi H-X, Shi Z-M, Han X-H, Han Y-W, Hong W (2016) Hypoxia-regulated lncRNAs in cancer. Gene 575:1–8PubMedGoogle Scholar
  21. 21.
    Cheetham S, Gruhl F, Mattick J, Dinger M (2013) Long noncoding RNAs and the genetics of cancer. Br J Cancer 108:2419PubMedPubMedCentralGoogle Scholar
  22. 22.
    Collins LJ, Schönfeld B, Chen XS (2011) The epigenetics of non-coding RNA. In: Handbook of epigenetics. ElsevierGoogle Scholar
  23. 23.
    Consortium EP (2007) Identification and analysis of functional elements in 1% of the human genome by the encode pilot project. Nature 447:799Google Scholar
  24. 24.
    Cortez MA, Bueso-Ramos C, Ferdin J, Lopez-Berestein G, Sood AK, Calin GA (2011) Micrornas in body fluids – the mix of hormones and biomarkers. Nat Rev Clin Oncol 8:467PubMedPubMedCentralGoogle Scholar
  25. 25.
    Costello JF, Fruhwald MC, Smiraglia DJ, Rush LJ, Robertson GP, Gao X, Wright FA, Feramisco JD, Peltomäki P, Lang JC (2000) Aberrant CpG-island methylation has non-random and tumour-type–specific patterns. Nat Genet 24:132PubMedGoogle Scholar
  26. 26.
    Dacic S, Kelly L, Shuai Y, Nikiforova MN (2010) miRNA expression profiling of lung adenocarcinomas: correlation with mutational status. Mod Pathol 23:1577PubMedGoogle Scholar
  27. 27.
    Darzi L, Boshtam M, Shariati L, Kouhpayeh S, Gheibi A, Mirian M, Rahimmanesh I, Khanahmad H, Tabatabaiefar MA (2017) The silencing effect of miR-30a on ITGA4 gene expression in vitro: an approach for gene therapy. Res Pharm Sci 12:456PubMedPubMedCentralGoogle Scholar
  28. 28.
    Davanian H, Balasiddaiah A, Heymann R, Sundström M, Redenström P, Silfverberg M, Brodin D, Sällberg M, Lindskog S, Weiner CK (2017) Ameloblastoma RNA profiling uncovers a distinct non-coding RNA signature. Oncotarget 8:4530PubMedGoogle Scholar
  29. 29.
    De Gonzalo-Calvo D, Kenneweg F, Bang C, Toro R, Van Der Meer RW, Rijzewijk LJ, Smit JW, Lamb HJ, Llorente-Cortes V, Thum T (2016) Circulating long noncoding RNAs in personalized medicine: response to pioglitazone therapy in type 2 diabetes. J Am Coll Cardiol 68:2914–2916PubMedGoogle Scholar
  30. 30.
    Deaton AM, Bird A (2011) CpG islands and the regulation of transcription. Genes Dev 25:1010–1022PubMedPubMedCentralGoogle Scholar
  31. 31.
    Eccles SA, Welch DR (2007) Metastasis: recent discoveries and novel treatment strategies. Lancet 369:1742–1757PubMedPubMedCentralGoogle Scholar
  32. 32.
    Edwards JR, Yarychkivska O, Boulard M, Bestor TH (2017) DNA methylation and DNA methyltransferases. Epigenetics Chromatin 10:23PubMedPubMedCentralGoogle Scholar
  33. 33.
    Erener S, Mojibian M, Fox JK, Denroche HC, Kieffer TJ (2013) Circulating miR-375 as a biomarker of β-cell death and diabetes in mice. Endocrinology 154:603–608PubMedGoogle Scholar
  34. 34.
    Esquela-Kerscher A, Slack FJ (2006) Oncomirs – microRNAs with a role in cancer. Nat Rev Cancer 6:259Google Scholar
  35. 35.
    Esteller M (2018) The human epigenome – implications for the understanding of human disease. Mol Pathol (Second Edition). Elsevier.Google Scholar
  36. 36.
    Fabbri M (2010) Mirnas as molecular biomarkers of cancer. Expert Rev Mol Diagn 10:435–444PubMedGoogle Scholar
  37. 37.
    Fakhoury M (2015) Autistic spectrum disorders: a review of clinical features, theories and diagnosis. Int J Dev Neurosci 43:70–77PubMedGoogle Scholar
  38. 38.
    Falkenberg KJ, Johnstone RW (2014) Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat Rev Drug Discov 13:673PubMedGoogle Scholar
  39. 39.
    Faria CM, Rutka JT, Smith C, Kongkham P (2011) Epigenetic mechanisms regulating neural development and pediatric brain tumor formation: a review. J Neurosurg 8:119–132Google Scholar
  40. 40.
    Fatica A, Bozzoni I (2014) Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet 15:7Google Scholar
  41. 41.
    Fellenberg J, Bernd L, Delling G, Witte D, Zahlten-Hinguranage A (2007) Prognostic significance of drug-regulated genes in high-grade osteosarcoma. Mod Pathol 20:1085PubMedGoogle Scholar
  42. 42.
    Fenelon K, Mukai J, Xu B, Hsu P-K, Drew LJ, Karayiorgou M, Fischbach GD, Macdermott AB, Gogos JA (2011) Deficiency of Dgcr8, a gene disrupted by the 22q11. 2 microdeletion, results in altered short-term plasticity in the prefrontal cortex. Proc Natl Acad Sci 108:4447–4452PubMedGoogle Scholar
  43. 43.
    Ferracin M, Veronese A, Negrini M (2010) Micromarkers: miRNAs in cancer diagnosis and prognosis. Expert Rev Mol Diagn 10:297–308PubMedGoogle Scholar
  44. 44.
    Flowers E, Aouizerat BE, Abbasi F, Lamendola C, Grove KM, Fukuoka Y, Reaven GM (2015) Circulating microRNA-320a and microRNA-486 predict thiazolidinedione response: moving towards precision health for diabetes prevention. Metabolism 64:1051–1059PubMedPubMedCentralGoogle Scholar
  45. 45.
    Gama-Sosa MA, Slagel VA, Trewyn RW, Oxenhandler R, Kuo KC, Gehrke CW, Ehrlich M (1983) The 5-methylcytosine content of DNA from human tumors. Nucleic Acids Res 11:6883–6894PubMedPubMedCentralGoogle Scholar
  46. 46.
    Geng Y, Xie S, Li Q, Ma J, Wang G (2011) Large intervening non-coding RNA HOTAIR is associated with hepatocellular carcinoma progression. J Int Med Res 39:2119–2128PubMedGoogle Scholar
  47. 47.
    Gianfrancesco O, Warburton A, Collier DA, Bubb VJ, Quinn JP (2017) Novel brain expressed RNA identified at the MIR137 schizophrenia-associated locus. Schizophr Res 184:109–115PubMedPubMedCentralGoogle Scholar
  48. 48.
    Gibbons A, Udawela M, Dean B (2018) Non-coding RNA as novel players in the pathophysiology of schizophrenia. Non-Coding RNA 4:11PubMedCentralGoogle Scholar
  49. 49.
    González-Castro TB, Hernandez-Diaz Y, Juárez-Rojop IE, López-Narváez ML, Tovilla-Zárate CA, Fresan A (2016) The role of a catechol-o-methyltransferase (COMT) Val158met genetic polymorphism in schizophrenia: a systematic review and updated meta-analysis on 32,816 subjects. NeuroMolecular Med 18:216–231PubMedGoogle Scholar
  50. 50.
    Guinney J, Dienstmann R, Wang X, De Reynies A, Schlicker A, Soneson C, Marisa L, Roepman P, Nyamundanda G, Angelino P (2015) The consensus molecular subtypes of colorectal cancer. Nat Med 21:1350PubMedPubMedCentralGoogle Scholar
  51. 51.
    Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai M-C, Hung T, Argani P, Rinn JL (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464:1071PubMedPubMedCentralGoogle Scholar
  52. 52.
    Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70Google Scholar
  53. 53.
    Hannon E, Lunnon K, Schalkwyk L, Mill J (2015) Interindividual methylomic variation across blood, cortex, and cerebellum: implications for epigenetic studies of neurological and neuropsychiatric phenotypes. Epigenetics 10:1024–1032PubMedPubMedCentralGoogle Scholar
  54. 54.
    Hu J, Xu J, Pang L, Zhao H, Li F, Deng Y, Liu L, Lan Y, Zhang X, Zhao T (2016) Systematically characterizing dysfunctional long intergenic non-coding RNAs in multiple brain regions of major psychosis. Oncotarget 7:71087PubMedPubMedCentralGoogle Scholar
  55. 55.
    Jha P, Agrawal R, Pathak P, Kumar A, Purkait S, Mallik S, Suri V, Chand Sharma M, Gupta D, Suri A (2015) Genome-wide small noncoding RNA profiling of pediatric high-grade gliomas reveals deregulation of several miRNAs, identifies downregulation of snoRNA cluster HBII-52 and delineates H3F3A and TP53 mutant-specific miRNAs and snoRNAs. Int J Cancer 137:2343–2353PubMedGoogle Scholar
  56. 56.
    Ji P, Diederichs S, Wang W, Böing S, Metzger R, Schneider PM, Tidow N, Brandt B, Buerger H, Bulk E (2003) MALAT-1, a novel noncoding RNA, and thymosin β4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene 22:8031PubMedGoogle Scholar
  57. 57.
    Johnson JS, Evans-Molina C (2015) Translational implications of the β-cell epigenome in diabetes mellitus. Transl Res 165:91–101PubMedGoogle Scholar
  58. 58.
    Kagohara LT, Stein-O’brien GL, Kelley D, Flam E, Wick HC, Danilova LV, Easwaran H, Favorov AV, Qian J, Gaykalova DA (2017) Epigenetic regulation of gene expression in cancer: techniques, resources and analysis. Brief Funct Genomics 17:49–63PubMedCentralGoogle Scholar
  59. 59.
    Kalari S, Pfeifer GP (2010) Identification of driver and passenger DNA methylation in cancer by epigenomic analysis. Adv Genet Elsevier 70:277–308Google Scholar
  60. 60.
    Khodabandehloo H, Gorgani-Firuzjaee S, Panahi G, Meshkani R (2016) Molecular and cellular mechanisms linking inflammation to insulin resistance and β-cell dysfunction. Transl Res 167:228–256PubMedGoogle Scholar
  61. 61.
    Kiser DP, Rivero O, Lesch KP (2015) Annual Research Review: the (epi) genetics of neurodevelopmental disorders in the era of whole-genome sequencing–unveiling the dark matter. J Child Psychol Psychiatry 56:278–295PubMedGoogle Scholar
  62. 62.
    Kogo R, Shimamura T, Mimori K, Kawahara K, Imoto S, Sudo T, Tanaka F, Shibata K, Suzuki A, Komune S (2011) Long non-coding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. Cancer Res 15:18985–18999Google Scholar
  63. 63.
    Kou Y, Zhang S, Zhao B, Ding R, Liu H, Li S (2013) Knockdown of MMP11 inhibits proliferation and invasion of gastric cancer cells. Int J Immunopathol Pharmacol 26:361–370PubMedGoogle Scholar
  64. 64.
    Kundakovic M, Jaric IJG (2017) The epigenetic link between prenatal adverse environments and neurodevelopmental disorders. Genes 8:104PubMedCentralGoogle Scholar
  65. 65.
    Lai M-C, Yang Z, Zhou L, Zhu Q-Q, Xie H-Y, Zhang F, Wu L-M, Chen L-M, Zheng S-S (2012) Long non-coding RNA MALAT-1 overexpression predicts tumor recurrence of hepatocellular carcinoma after liver transplantation. Med Oncol 29:1810–1816PubMedGoogle Scholar
  66. 66.
    Lenoir O, Flosseau K, Ma FX, Blondeau B, Mai A, Bassel-Duby R, Ravassard P, Olson EN, Haumaitre C, Scharfmann R (2011) Specific control of pancreatic endocrine Β-and Δ-cell mass by class IIA histone deacetylases Hdac4, Hdac5, and Hdac9. J Diabetes. Db_110440Google Scholar
  67. 67.
    Li HP, Leu YW, Chang YSJCR (2005) Epigenetic changes in virus-associated human cancers. Cell Res 15:262PubMedGoogle Scholar
  68. 68.
    Liu M, Zhou J, Chen Z, Cheng ASL (2017) Understanding the epigenetic regulation of tumours and their microenvironments: opportunities and problems for epigenetic therapy. J Pathol 241:10–24PubMedGoogle Scholar
  69. 69.
    Loke YJ, Novakovic B, Ollikainen M, Wallace EM, Umstad MP, Permezel M, Morley R, Ponsonby A-L, Gordon L, Galati JC (2013) The peri/postnatal epigenetic twins study (PETS). Twin Res Hum Genet 16:13–20PubMedGoogle Scholar
  70. 70.
    Luger K, Dechassa ML, Tremethick DJ (2012) New insights into nucleosome and chromatin structure: an ordered state or a disordered affair? Nat Rev Mol Cell Biol 13:436PubMedPubMedCentralGoogle Scholar
  71. 71.
    Luo W, Karpf AR, Deeb KK, Muindi JR, Morrison CD, Johnson CS, Trump DL (2010) Epigenetic regulation of vitamin D 24-hydroxylase/CYP24A1 in human prostate cancer. Can Res. 0008-5472. Can-10-0617Google Scholar
  72. 72.
    Masbi MH, Mohammadiasl J, Galehdari H, Ahmadzadeh A, Tabatabaiefar MA, Golchin N, Haghpanah V, Rahim F (2014) Characterization of wild-type and mutated ret proto-oncogene associated with familial medullary thyroid cancer. Asian Pac J Cancer Prev 15:2027–2033PubMedGoogle Scholar
  73. 73.
    Mccabe MT, Ott HM, Ganji G, Korenchuk S, Thompson C, Van Aller GS, Liu Y, Graves AP, Diaz E, Lafrance LV (2012) EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature 492:108PubMedGoogle Scholar
  74. 74.
    Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10:155Google Scholar
  75. 75.
    Merelo V, Durand D, Lescallette AR, Vrana KE, Hong LE, Faghihi MA, Bellon A (2015) Associating schizophrenia, long non-coding RNAs and neurostructural dynamics. Front Mol Neurosci 8:57PubMedPubMedCentralGoogle Scholar
  76. 76.
    Merico D, Zarrei M, Costain G, Ogura L, Alipanahi B, Gazzellone MJ, Butcher NJ, Thiruvahindrapuram B, Nalpathamkalam T, Chow EW (2015) Whole-genome sequencing suggests schizophrenia risk mechanisms in humans with 22q11. 2 deletion syndrome. G3: Genes, Genomes, Genetics G3:115.021345Google Scholar
  77. 77.
    Meshkani R, Saberi H, Mohammadtaghvaei N, Tabatabaiefar MA (2012) Estrogen receptor alpha gene polymorphisms are associated with type 2 diabetes and fasting glucose in male subjects. Mol Cell Biochem 359:225–233PubMedGoogle Scholar
  78. 78.
    Michor F, Iwasa Y, Nowak MA (2004) Dynamics of cancer progression. Nat Rev Cancer 4:197PubMedGoogle Scholar
  79. 79.
    Minarovits J, Demcsák A, Banati F, Niller HH (2016). Epigenetic dysregulation in virus-associated neoplasms. In: Patho-epigenetics of infectious disease. Springer, ChamGoogle Scholar
  80. 80.
    Mitra SA, Mitra AP, Triche TJ (2012) A central role for long non-coding RNA in cancer. Front Genet 3:17PubMedPubMedCentralGoogle Scholar
  81. 81.
    Moridnia A, Tabatabaiefar MA, Zeinalian M, Minakari M, Kheirollahi M, Moghaddam NA (2018) Novel variants and copy number variation in CDH1 gene in iranian patients with sporadic diffuse gastric cancer. J Gastrointest Cancer:1–8Google Scholar
  82. 82.
    Mosley AL, Corbett JA, ÖZcan S (2004) Glucose regulation of insulin gene expression requires the recruitment of p300 by the β-cell-specific transcription factor Pdx-1. Mol Endocrinol 18:2279–2290PubMedGoogle Scholar
  83. 83.
    Nicoloso MS, Spizzo R, Shimizu M, Rossi S, Calin GA (2009) Micrornas – the micro steering wheel of tumour metastases. Nat Rev Cancer 9:293PubMedGoogle Scholar
  84. 84.
    Nilsson E, Jansson PA, Perfilyev A, Volkov P, Pedersen M, Svensson MK, Poulsen P, Ribel-Madsen R, Pedersen NL, Almgren P (2014) Altered DNA methylation and differential expression of genes influencing metabolism and inflammation in adipose tissue from subjects with type 2 diabetes. Diabetes 63:2962–2976PubMedGoogle Scholar
  85. 85.
    Oberlander TF, Weinberg J, Papsdorf M, Grunau R, Misri S, Devlin AM (2008) Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR3C1) and infant cortisol stress responses. Epigenetics 3:97–106Google Scholar
  86. 86.
    Ortega Ávila JG, Echeverri I, De Plata CA, Castillo A (2014) Impact of oxidative stress during pregnancy on fetal epigenetic patterns and early origin of vascular diseases. Nutr Rev 73:12–21Google Scholar
  87. 87.
    Perkins DO, Jeffries C, Sullivan P (2005) Expanding the ‘central dogma’: the regulatory role of nonprotein coding genes and implications for the genetic liability to schizophrenia. Mol Psychiatry 10:69PubMedGoogle Scholar
  88. 88.
    Peschansky VJ, Wahlestedt C (2014) Non-coding RNAs as direct and indirect modulators of epigenetic regulation. Epigenetics 9:3–12PubMedGoogle Scholar
  89. 89.
    Piunti A, Shilatifard A (2016) Epigenetic balance of gene expression by polycomb and compass families. Science 352:Aad9780PubMedGoogle Scholar
  90. 90.
    Prasetyanti PR, Medema JP (2017) Intra-tumor heterogeneity from a cancer stem cell perspective. Mol Cancer 16:41PubMedPubMedCentralGoogle Scholar
  91. 91.
    Qu M, Ren S-C, Sun Y-H (2014) Current early diagnostic biomarkers of prostate cancer. Asian J Androl 16:549PubMedPubMedCentralGoogle Scholar
  92. 92.
    Rajagopalan D, Jha S (2018) An epi (c) genetic war: pathogens, cancer and human genome. Biochimica et Biophysica Acta (Bba)-Rev CancerGoogle Scholar
  93. 93.
    Ren Y, Cui Y, Li X, Wang B, Na L, Shi J, Wang L, Qiu L, Zhang K, Liu G (2015) A co-expression network analysis reveals lncrna abnormalities in peripheral blood in early-onset schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry 63:1–5Google Scholar
  94. 94.
    Saengboonmee C, Sawanyawisuth K, Chamgramol Y, Wongkham S (2018) Prognostic biomarkers for cholangiocarcinoma and their clinical implications. Expert Rev Anticancer Ther 18:579–592PubMedGoogle Scholar
  95. 95.
    Schmitz SU, Grote P, Herrmann BG (2016) Mechanisms of long noncoding RNA function in development and disease. Cell Mol Life Sci 73:2491–2509PubMedPubMedCentralGoogle Scholar
  96. 96.
    Schubeler D (2015) Function and information content of DNA methylation. Nature 517:321Google Scholar
  97. 97.
    Schumacher A, Petronis A (2006) Epigenetics of complex diseases: from general theory to laboratory experiments. In: DNA methylation: development, genetic disease and cancer. Springer, BerlinGoogle Scholar
  98. 98.
    Seike M, Goto A, Okano T, Bowman ED, Schetter AJ, Horikawa I, Mathe EA, Jen J, Yang P, Sugimura H (2009) Mir-21 is an EGFR-regulated anti-apoptotic factor in lung cancer in never-smokers. Proc Natl Acad Sci 106:12085–12090PubMedGoogle Scholar
  99. 99.
    Shah R, Murthy V, Pacold M, Danielson K, Tanriverdi K, Larson MG, Hanspers K, Pico A, Mick E, Reis J (2017) Extracellular RNAs are associated with insulin resistance and metabolic phenotypes. Diabetes Care 40:546–553PubMedPubMedCentralGoogle Scholar
  100. 100.
    Sharan SK, Morimatsu M, Albrecht U, Lim D-S, Regel E, Dinh C, Sands A, Eichele G, Hasty P, Bradley A (1997) Embryonic lethality and radiation hypersensitivity mediated by Rad51 in mice lacking Brca2. Nature 386:804PubMedGoogle Scholar
  101. 101.
    Shi W, Du J, Qi Y, Liang G, Wang T, Li S, Xie S, Zeshan B, Xiao Z (2012) Aberrant expression of serum miRNAs in schizophrenia. J Psychiatr Res 46:198–204PubMedGoogle Scholar
  102. 102.
    Soltani M, Tabatabaiefar MA, Mohsenifar Z, Pourreza MR, Moridnia A, Shariati L, Razavi SM (2018) Genetic study of the BRAF gene reveals new variants and high frequency of the V600E mutation among iranian ameloblastoma patients. J Oral Pathol Med 47:86–90PubMedGoogle Scholar
  103. 103.
    Sommese L, Zullo A, Mancini FP, Fabbricini R, Soricelli A, Napoli C (2017) Clinical relevance of epigenetics in the onset and management of type 2 diabetes mellitus. Epigenetics 12:401–415PubMedPubMedCentralGoogle Scholar
  104. 104.
    Stueve TR, Li W-Q, Shi J, Marconett CN, Zhang T, Yang C, Mullen D, Yan C, Wheeler W, Hua X (2017) Epigenome-wide analysis of DNA methylation in lung tissue shows concordance with blood studies and identifies tobacco smoke-inducible enhancers. Hum Mol Genet 26:3014–3027PubMedPubMedCentralGoogle Scholar
  105. 105.
    Sullivan PF, Kendler KS, Neale MC (2003) Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch Gen Psychiatry 60:1187–1192PubMedPubMedCentralGoogle Scholar
  106. 106.
    Tabatabaiefar MA, Moridnia A (2017) Gastrointestinal cancers. In: Cancer genetics and psychotherapy. Springer, ChamGoogle Scholar
  107. 107.
    Tabatabaiefar MA, Moridnia A, Shariati L (2017) Cancers of the endocrine system. In: Cancer genetics and psychotherapy. Springer, ChamGoogle Scholar
  108. 108.
    Teschendorff AE, Yang Z, Wong A, Pipinikas CP, Jiao Y, Jones A, Anjum S, Hardy R, Salvesen HB, Thirlwell CJ (2015) Correlation of smoking-associated DNA methylation changes in buccal cells with DNA methylation changes in epithelial cancer. JAMA Oncol 1:476–485PubMedGoogle Scholar
  109. 109.
    Travers AA, Vaillant C, Arneodo A, Muskhelishvili G (2012) DNA structure, nucleosome placement and chromatin remodelling: a perspective. Portland Press Limited, LondonGoogle Scholar
  110. 110.
    Tsang WP, Wong TW, Cheung AH, Kwok TT (2007) Induction of drug resistance and transformation in human cancer cells by the noncoding RNA CUDR. RNA 13:890–898PubMedPubMedCentralGoogle Scholar
  111. 111.
    Ueda T, Volinia S, Okumura H, Shimizu M, Taccioli C, Rossi S, Alder H, Liu C-G, Oue N, Yasui W (2010) Relation between microRNA expression and progression and prognosis of gastric cancer: a microrna expression analysis. Lancet 11:136–146PubMedGoogle Scholar
  112. 112.
    Van L, Boot E, Bassett AS (2017) Update on the 22q11. 2 deletion syndrome and its relevance to schizophrenia. Curr Opin Psychiatry 30:191–196PubMedGoogle Scholar
  113. 113.
    Van Roosbroeck K, Pollet J, Calin GA (2013) Mirnas and long noncoding RNAs as biomarkers in human diseases. Expert Rev Mol Diagn 13:183–204PubMedGoogle Scholar
  114. 114.
    Volkmar M, Dedeurwaerder S, Cunha DA, Ndlovu MN, Defrance M, Deplus R, Calonne E, Volkmar U, Igoillo-Esteve M, Naamane N (2012) DNA methylation profiling identifies epigenetic dysregulation in pancreatic islets from type 2 diabetic patients. EMBO J 31:1405–1426PubMedPubMedCentralGoogle Scholar
  115. 115.
    Wang C, Wan S, Yang T, Niu D, Zhang A, Yang C, Cai J, Wu J, Song J, Zhang C-Y (2016) Increased serum micrornas are closely associated with the presence of microvascular complications in type 2 diabetes mellitus. Sci Rep 6:20032PubMedPubMedCentralGoogle Scholar
  116. 116.
    Wang H, Tan G, Dong L, Cheng L, Li K, Wang Z, Luo H (2012) Circulating miR-125b as a marker predicting chemoresistance in breast cancer. PLoS One 7:E34210PubMedPubMedCentralGoogle Scholar
  117. 117.
    Wu D, Ni J, Beretov J, Cozzi P, Willcox M, Wasinger V, Walsh B, Graham P, Li Y (2017) Urinary biomarkers in prostate cancer detection and monitoring progression. Crit Rev Oncol 118:15–26Google Scholar
  118. 118.
    Xu H, Guo S, Li W, Yu P (2015) The circular RNA Cdr1as, via miR-7 and its targets, regulates insulin transcription and secretion in islet cells. Sci Rep 5:12453PubMedPubMedCentralGoogle Scholar
  119. 119.
    Yagihashi S, Inaba W, Mizukami H (2016) Dynamic pathology of islet endocrine cells in type 2 diabetes: β-cell growth, death, regeneration and their clinical implications. J Diabetes Investig 7:155–165PubMedGoogle Scholar
  120. 120.
    Zampetaki A, Kiechl S, Drozdov I, Willeit P, Mayr U, Prokopi M, Mayr A, Weger S, Oberhollenzer F, Bonora E (2010) Plasma microrna profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res 107:810–817PubMedGoogle Scholar
  121. 121.
    Zhang R, Xia Y, Wang Z, Zheng J, Chen Y, Li X, Wang Y, Ming HJB, Communications BR (2017) Serum long non coding RNA MALAT-1 protected by exosomes is up-regulated and promotes cell proliferation and migration in non-small cell lung cancer. Biochem Biophys Res Commun 490:406–414PubMedGoogle Scholar
  122. 122.
    Zhang S, Wan Y, Pan T, Gu X, Qian C, Sun G, Sun L, Xiang Y, Wang Z, Shi L (2012) MicroRNA-21 inhibitor sensitizes human glioblastoma U251 stem cells to chemotherapeutic drug temozolomide. J Mol Neurosci 47:346–356PubMedGoogle Scholar
  123. 123.
    Zhang WY, Liu YJ, He Y, Chen P (2018) Suppression of long noncoding RNA NCK1-AS1 increases chemosensitivity to cisplatin in cervical cancer. J Cell Physiol 234:4302–4313PubMedGoogle Scholar
  124. 124.
    Zhou M, Liu Z, Zhao Y, Ding Y, Liu H, Xi Y, Xiong W, Li G, Lu J, Fodstad O (2010) MicroRNA-125b confers the resistance of breast cancer cells to paclitaxel through suppression of pro-apoptotic Bcl-2 antagonist killer 1 (Bak1). J Biol Chem M109:083337Google Scholar
  125. 125.
    Zhou Y, Wang J, Lu X, Song X, Ye Y, Zhou J, Ying B, Wang L (2013) Evaluation of six SNPs of microRNA machinery genes and risk of schizophrenia. J Mol Neurosci 49:594–599PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mohammad Amin Tabatabaiefar
    • 1
    • 2
    • 3
    Email author
  • Roshanak S. Sajjadi
    • 1
  • Sina Narrei
    • 3
  1. 1.Department of Genetics and Molecular Biology, School of MedicineIsfahan University of Medical SciencesIsfahanIran
  2. 2.Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non Communicable DiseaseIsfahan University of Medical SciencesIsfahanIran
  3. 3.Genetics DepartmentErythron Pathobiology and Genetics labIsfahanIran

Personalised recommendations