Advertisement

Silver-Based Photocatalysts: A Special Class

  • Vicente Rodríguez-GonzálezEmail author
  • Agileo Hernández-Gordillo
Chapter
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 29)

Abstract

Silver-nanoparticles are more and more used not only in traditional antimicrobial applications but also in other interesting nanotechnology areas such as innovative nanostructures for green chemistry, disinfection of pathogenic microorganisms in agriculture fields and hospitals, nanomedicine and renewable clean energy processes like hydrogen production. The low-cost and practical synthesis methods of silver-nanoparticles, which are in contrast with those using noble and transition metals, are indeed a tangible alternative. These silver-nanoparticles cocatalysts are easy to prepare and inexpensive, and with mild condition methods, zero dimension (0D) to third dimension (3D) nanostructured particles can be obtained, whose size and shape can be modulated according to specific applications. In this chapter, a practical review about the use of silver-nanoparticles in mesoporous and graphene-based materials and in coatings intended for photocatalytic applications is reported. Activity insights into the plasmonic effect, electron-hole mediator and bacteriostatic inhibition of pathogenic colonies at room temperature are provided. The oxidation state is also a significant factor for understanding the role played by silver-nanoparticles in the enhancement of nanotechnology and environmental photocatalytic applications. The discussion featured in this chapter is based on suitable examples from the literature concerning photoactive silver-nanoparticles functionalized on nanostructured materials.

Keywords

Silver-nanoparticles materials Nanocatalysts Antibacterial photocatalysis Plasmon resonance Photoreduction 

References

  1. Alfaro SO, Rodríguez-González V, Zaldívar-Cadena AA, Lee SW (2011) Catal Today 166:166.  https://doi.org/10.1016/j.cattod.2010.06.028 CrossRefGoogle Scholar
  2. Ao Y, Bao J, Wang P, Wang C (2017) J Alloys Compd 698:410.  https://doi.org/10.1016/j.jallcom.2016.12.231 CrossRefGoogle Scholar
  3. Bakhsh EM, Khan SA, Marwani HM, Danish EY, Asiri AM, Khan SB (2018) Int J Biol Macromol 107:668.  https://doi.org/10.1016/j.ijbiomac.2017.09.034 CrossRefGoogle Scholar
  4. Bogireddy NKR, Kiran Kumar HA, Mandal BK (2016) J Environ Chem Eng 4:56.  https://doi.org/10.1016/j.jece.2015.11.004 CrossRefGoogle Scholar
  5. Borthakur P, Boruah PK, Hussain N, Silla Y, Das MR (2017) Appl Surf Sci 423:752.  https://doi.org/10.1016/j.apsusc.2017.06.230 CrossRefGoogle Scholar
  6. Cai A, Wang X, Guo A, Chang Y (2016) J Photochem Photobiol B 162:486.  https://doi.org/10.1016/j.jphotobiol.2016.07.020 CrossRefGoogle Scholar
  7. Cao W, Chen L, Qi Z (2015) J Mol Catal A Chem 401:81.  https://doi.org/10.1016/j.molcata.2015.02.023 CrossRefGoogle Scholar
  8. Chen S, Guo Y, Zhong H et al (2014) Chem Eng J 256:238.  https://doi.org/10.1016/j.cej.2014.07.006 CrossRefGoogle Scholar
  9. Chen X, Hou J, Yang H, Xu Z-L (2016) J Environ Chem Eng 4:1068.  https://doi.org/10.1016/j.jece.2016.01.015 CrossRefGoogle Scholar
  10. Cheng X, Dong P, Huang Z et al (2017) J CO2 Utilization 20:200.  https://doi.org/10.1016/j.jcou.2017.04.009 CrossRefGoogle Scholar
  11. Chiang M-Y, Lin H-N (2015) Mater Lett 160:440.  https://doi.org/10.1016/j.matlet.2015.08.021 CrossRefGoogle Scholar
  12. Collado L, Jana P, Sierra B et al (2013) Chem Eng J 224:128.  https://doi.org/10.1016/j.cej.2012.12.053 CrossRefGoogle Scholar
  13. Davarpanah J, Kiasat AR (2013) Catal Commun 41:6.  https://doi.org/10.1016/j.catcom.2013.06.020 CrossRefGoogle Scholar
  14. Ding J, Bu Y, Ou M, Yu Y, Zhong Q, Fan M (2017) Appl Catal B Environ 202:314.  https://doi.org/10.1016/j.apcatb.2016.09.038 CrossRefGoogle Scholar
  15. Dong Z, Le X, Li X, Zhang W, Dong C, Ma J (2014) Appl Catal B Environ 158–159:129.  https://doi.org/10.1016/j.apcatb.2014.04.015 CrossRefGoogle Scholar
  16. Faisal M, Ismail AA, Harraz FA, Al-Sayari SA, El-Toni AM, Al-Assiri MS (2016) Mater Des 98:223.  https://doi.org/10.1016/j.matdes.2016.03.019 CrossRefGoogle Scholar
  17. Gao S, Feng T, Feng C, Shang N, Wang C (2016) J Colloid Interface Sci 466:284.  https://doi.org/10.1016/j.jcis.2015.12.045 CrossRefGoogle Scholar
  18. Geetha D, Kavitha S, Ramesh PS (2015) Ecotoxicol Environ Saf 121:126.  https://doi.org/10.1016/j.ecoenv.2015.04.042 CrossRefGoogle Scholar
  19. Giri S, Das R, van der Westhuyzen C, Maity A (2017) Appl Catal B Environ 209:669.  https://doi.org/10.1016/j.apcatb.2017.03.033 CrossRefGoogle Scholar
  20. Gong D, Ho WCJ, Tang Y et al (2012) J Solid State Chem 189:117.  https://doi.org/10.1016/j.jssc.2011.11.036 CrossRefGoogle Scholar
  21. Guan Y, Wang S, Wang X et al (2017) Appl Catal B Environ 209:329.  https://doi.org/10.1016/j.apcatb.2017.01.082 CrossRefGoogle Scholar
  22. Hernández-Gordillo A, González VR (2015) Chem Eng J 261:53.  https://doi.org/10.1016/j.cej.2014.05.148 CrossRefGoogle Scholar
  23. Hernandez-Gordillo A, Arroyo M, Zanella R, Rodriguez-Gonzalez V (2014) J Hazard Mater 268:84.  https://doi.org/10.1016/j.jhazmat.2013.12.069 CrossRefGoogle Scholar
  24. Hu X, Hu C, Wang R (2015) Appl Catal B Environ 176–177:637.  https://doi.org/10.1016/j.apcatb.2015.04.040 CrossRefGoogle Scholar
  25. Jeyapragasam T (2016) Mater Today Proc 3:2146.  https://doi.org/10.1016/j.matpr.2016.04.120 CrossRefGoogle Scholar
  26. Ji H, Lyu L, Zhang L, An X, Hu C (2016a) Appl Catal B Environ 199:230.  https://doi.org/10.1016/j.apcatb.2016.06.037 CrossRefGoogle Scholar
  27. Ji T, Chen L, L M et al (2016b) Chem Eng J 295:301.  https://doi.org/10.1016/j.cej.2016.03.033 CrossRefGoogle Scholar
  28. Ji T, Chen L, L M et al (2016c) Catal Commun 77:65.  https://doi.org/10.1016/j.catcom.2016.01.025 CrossRefGoogle Scholar
  29. Kaur A, Gupta G, Ibhadon AO, Salunke DB, Sinha ASK, Kansal SK (2017) J Environ Chem Eng.  https://doi.org/10.1016/j.jece.2017.05.032
  30. Kubacka A, Muñoz-Batista MJ, Ferrer M, Fernández-García M (2013) Appl Catal B Environ 140–141:680.  https://doi.org/10.1016/j.apcatb.2013.04.077 CrossRefGoogle Scholar
  31. Kurtan U, Amir M, Yıldız A, Baykal A (2016) Appl Surf Sci 376:16.  https://doi.org/10.1016/j.apsusc.2016.02.120 CrossRefGoogle Scholar
  32. Lee SW, Obregón-Alfaro S, Rodríguez-González V (2011) J Photochem Photobiol A Chem 221:71.  https://doi.org/10.1016/j.jphotochem.2011.04.026 CrossRefGoogle Scholar
  33. Lee SW, Lozano-Sanchez LM, Rodriguez-Gonzalez V (2013) J Hazard Mater 263(Pt 1):20.  https://doi.org/10.1016/j.jhazmat.2013.08.017 CrossRefGoogle Scholar
  34. Lei M, Wu W, Sun L, Tian Q, Jiang C, Xiao X (2015) Colloids Surf A Physicochem Eng Asp 482:276.  https://doi.org/10.1016/j.colsurfa.2015.06.018 CrossRefGoogle Scholar
  35. Li S, Hu S, Jiang W, Xu K (2017) Mater Lett 196:343.  https://doi.org/10.1016/j.matlet.2017.03.093 CrossRefGoogle Scholar
  36. Linic S, Aslam U, Boerigter C, Morabito M (2015) Nat Mater 14:567.  https://doi.org/10.1038/nmat4281 CrossRefGoogle Scholar
  37. Liu L, Pitts DT, Zhao H, Zhao C, Li Y (2013) Appl Catal A Gen 467:474.  https://doi.org/10.1016/j.apcata.2013.08.019 CrossRefGoogle Scholar
  38. Ma Q, Zhang H, Guo R et al (2017) J Taiwan Inst Chem Eng 80:176.  https://doi.org/10.1016/j.jtice.2017.06.033 CrossRefGoogle Scholar
  39. Martinez-Orozco RD, Rosu HC, Lee SW, Rodriguez-Gonzalez V (2013) J Hazard Mater 263(Pt 1):52.  https://doi.org/10.1016/j.jhazmat.2013.07.056 CrossRefGoogle Scholar
  40. Nagajyothi PC, Pandurangan M, Vattikuti SVP, Tettey CO, Sreekanth TVM, Shim J (2017) Sep Purif Technol 188:228.  https://doi.org/10.1016/j.seppur.2017.07.026 CrossRefGoogle Scholar
  41. Naik B, Prasad VS, Ghosh NN (2012) Powder Technol 232:1.  https://doi.org/10.1016/j.powtec.2012.07.052 CrossRefGoogle Scholar
  42. Narayanan KB, Sakthivel N (2011) Bioresour Technol 102:10737.  https://doi.org/10.1016/j.biortech.2011.08.103 CrossRefGoogle Scholar
  43. Obregón S, Lee SW, Rodríguez-González V (2016) Mater Lett 173:174.  https://doi.org/10.1016/j.matlet.2016.03.015 CrossRefGoogle Scholar
  44. Pang Y, Song L, Chen C, Ge L (2017) Appl Surf Sci 420:361.  https://doi.org/10.1016/j.apsusc.2017.05.118 CrossRefGoogle Scholar
  45. Pant B, Park M, Kim H-Y, Park S-J (2016) Synth Met 220:533.  https://doi.org/10.1016/j.synthmet.2016.07.027 CrossRefGoogle Scholar
  46. Patil SS, Mali MG, Tamboli MS et al (2016) Catal Today 260:126.  https://doi.org/10.1016/j.cattod.2015.06.004 CrossRefGoogle Scholar
  47. Paul B, Purkayastha DD, Dhar SS, Das S, Haldar S (2016) J Alloys Compd 681:316.  https://doi.org/10.1016/j.jallcom.2016.04.229 CrossRefGoogle Scholar
  48. Pirhashemi M, Habibi-Yangjeh A (2017) J Colloid Interface Sci 491:216.  https://doi.org/10.1016/j.jcis.2016.12.044 CrossRefGoogle Scholar
  49. Rafaie HA, Nor RM, Azmina MS, Ramli NIT, Mohamed R (2017) J Environ Chem Eng 5:3963.  https://doi.org/10.1016/j.jece.2017.07.070 CrossRefGoogle Scholar
  50. Rodríguez-González V, Alfaro SO, Torres-Martínez LM, Cho S-H, Lee S-W (2010) Appl Catal B Environ 98:229.  https://doi.org/10.1016/j.apcatb.2010.06.001 CrossRefGoogle Scholar
  51. Rodriguez-Gonzalez V, Dominguez-Espindola RB, Casas-Flores S, Patron-Soberano OA, Camposeco-Solis R, Lee SW (2016) ACS Appl Mater Interfaces 8:31625.  https://doi.org/10.1021/acsami.6b10060 CrossRefGoogle Scholar
  52. Rostami-Vartooni A, Nasrollahzadeh M, Salavati-Niasari M, Atarod M (2016) J Alloys Compd 689:15.  https://doi.org/10.1016/j.jallcom.2016.07.253 CrossRefGoogle Scholar
  53. Russo M, Armetta F, Riela S, Chillura Martino D, Meo PL, Noto R (2015) J Mol Catal A Chem 408:250.  https://doi.org/10.1016/j.molcata.2015.07.031 CrossRefGoogle Scholar
  54. Saravanakumar K, Muthuraj V, Jeyaraj M (2018) Spectrochim Acta A Mol Biomol Spectrosc 188:291.  https://doi.org/10.1016/j.saa.2017.07.022 CrossRefGoogle Scholar
  55. Selvam K, Swaminathan M (2011) J Mol Catal A Chem 351:52.  https://doi.org/10.1016/j.molcata.2011.09.014 CrossRefGoogle Scholar
  56. Sharma K, Maiti K, Kim NH, Hui D, Lee JH (2018) Compos Part B 138:35.  https://doi.org/10.1016/j.compositesb.2017.11.021 CrossRefGoogle Scholar
  57. Shi W, Lv H, Yuan S, Huang H, Liu Y, Kang Z (2017) Sep Purif Technol 174:75.  https://doi.org/10.1016/j.seppur.2016.10.005 CrossRefGoogle Scholar
  58. Sudhakar P, Soni H (2018) J Environ Chem Eng 6:28.  https://doi.org/10.1016/j.jece.2017.11.053 CrossRefGoogle Scholar
  59. Tahir M, Tahir B, Amin NAS, Zakaria ZY (2017) J CO2 Utilization 18:250.  https://doi.org/10.1016/j.jcou.2017.02.002 CrossRefGoogle Scholar
  60. Tao S, Yang M, Chen H, Ren M, Chen G (2017) J Colloid Interface Sci 486:16.  https://doi.org/10.1016/j.jcis.2016.09.051 CrossRefGoogle Scholar
  61. Tonda S, Jo W-K (2017) Catal Today.  https://doi.org/10.1016/j.cattod.2017.12.019
  62. Wang T, Wei J, Shi H et al (2017a) Physica E 86:103.  https://doi.org/10.1016/j.physe.2016.10.016 CrossRefGoogle Scholar
  63. Wang L, Shi Y, Wang T, Zhang L (2017b) J Colloid Interface Sci 505:421.  https://doi.org/10.1016/j.jcis.2017.06.037 CrossRefGoogle Scholar
  64. Wen Y, Ding H, Shan Y (2011) Nanoscale 3:4411.  https://doi.org/10.1039/c1nr10604j CrossRefGoogle Scholar
  65. Wen X-J, Niu C-G, Zhang L, Huang D-W, Zeng G-M (2017) Ceram Int 43:1922.  https://doi.org/10.1016/j.ceramint.2016.10.153 CrossRefGoogle Scholar
  66. Wilke CM, Wunderlich B, Gaillard JF, Gray KA (2018) Environ Sci Technol 52:3185.  https://doi.org/10.1021/acs.est.7b05629 CrossRefGoogle Scholar
  67. Wu Q-S, Cui Y, Yang L-M, Zhang G-Y, Gao D-Z (2015) Sep Purif Technol 142:168.  https://doi.org/10.1016/j.seppur.2014.12.039 CrossRefGoogle Scholar
  68. Xiao X, Ge L, Han C et al (2015) Appl Catal B Environ 163:564.  https://doi.org/10.1016/j.apcatb.2014.08.037 CrossRefGoogle Scholar
  69. Xiu ZM, Ma J, Alvarez PJ (2011) Environ Sci Technol 45:9003.  https://doi.org/10.1021/es201918f CrossRefGoogle Scholar
  70. Xiu ZM, Zhang QB, Puppala HL, Colvin VL, Alvarez PJ (2012) Nano Lett 12:4271.  https://doi.org/10.1021/nl301934w CrossRefGoogle Scholar
  71. Yang Z, X X, Liang X et al (2017) Appl Catal B Environ 205:42.  https://doi.org/10.1016/j.apcatb.2016.12.012 CrossRefGoogle Scholar
  72. Yang Y, Zhang W, Liu R, Cui J, Deng C (2018) Sep Purif Technol 190:278.  https://doi.org/10.1016/j.seppur.2017.09.003 CrossRefGoogle Scholar
  73. Ye M, Wang R, Shao Y et al (2018) J Photochem Photobiol A Chem 351:145.  https://doi.org/10.1016/j.jphotochem.2017.10.016 CrossRefGoogle Scholar
  74. Yu A, Wang Q, Wang J, Chang C-t (2017) Catal Commun 90:75.  https://doi.org/10.1016/j.catcom.2016.11.004 CrossRefGoogle Scholar
  75. Zhao C, Krall A, Zhao H, Zhang Q, Li Y (2012) Int J Hydrog Energy 37:9967.  https://doi.org/10.1016/j.ijhydene.2012.04.003 CrossRefGoogle Scholar
  76. Zhao X, S S, G W et al (2017) Appl Surf Sci 406:254.  https://doi.org/10.1016/j.apsusc.2017.02.155 CrossRefGoogle Scholar
  77. Zhu W, Liu J, Yu S, Zhou Y, Yan X (2016) J Hazard Mater 318:407.  https://doi.org/10.1016/j.jhazmat.2016.06.066 CrossRefGoogle Scholar
  78. Zhu Z, Qin J, Jiang M, Ding Z, Hou Y (2017) Appl Surf Sci 391:572.  https://doi.org/10.1016/j.apsusc.2016.06.148 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Vicente Rodríguez-González
    • 1
    Email author
  • Agileo Hernández-Gordillo
    • 2
  1. 1.División de Materiales AvanzadosIPICYT, Instituto Potosino de Investigación Científica y TecnológicaSan Luis PotosíMéxico
  2. 2.Instituto de Investigaciones en MaterialesUniversidad Nacional Autónoma de MéxicoCoyoacánMéxico

Personalised recommendations