Non-metal (Oxygen, Sulphur, Nitrogen, Boron and Phosphorus)-Doped Metal Oxide Hybrid Nanostructures as Highly Efficient Photocatalysts for Water Treatment and Hydrogen Generation

  • M. S. Jyothi
  • Vignesh Nayak
  • Kakarla Raghava Reddy
  • S. Naveen
  • A. V. Raghu
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 29)


Inorganic metal oxide semiconductor-based photocatalyst plays key role in the photocatalytic process for applications such as environmental pollution (air and water) and hydrogen generation, due to their physico-chemical and photocatalytic properties. However, they are only active under ultraviolet irradiation, and it is a major drawback of oxide-based photocatalysts. The designing of visible-light-driven photocatalysts based on metal oxides is very important for the highly efficient photocatalytic process.

Doping of metal oxides (e.g. TiO2, ZnO, ZrO2) with non-metals such as oxygen, sulphur, nitrogen, boron and phosphorus elements enhances their photocatalytic efficiency under visible-light irradiation due to the strong oxidizing ability of non-metals. In this chapter, we discussed recent advances in various methodologies for the synthesis of series of above non-metal-doped hybrid nanostructured metal oxides, their properties, photocatalytic mechanism and the parameters (e.g. dopant concentration, photocatalyst content, morphological structures and band gap characteristics) that decide the photocatalytic performance for photocatalytic applications such as wastewater treatment and hydrogen generation. This chapter will provide novel ideas for the synthesis strategies of metal-free efficient photocatalysts with superior visible-light response for applications in the fields of the environment and energy.


Metal oxide (TiO2, ZnO) semiconductors Non-metal (oxygen, sulphur, nitrogen, boron and phosphorus) dopants Non-metal-doped metal oxide hybrids Photocatalysis Visible-light-driven photocatalysts Band gap properties Wastewater treatment Hydrogen generation 


  1. Akyol A, Yatmaz H, Bayramoglu M (2004) Photocatalytic decolorization of Remazol Red RR in aqueous ZnO suspensions. Appl Catal B Environ 54(1):19–24CrossRefGoogle Scholar
  2. Alireza Khataee GAM (2012) Nanostructured titanium dioxide materials properties, preparation and applications. World Scientific Publishing Co. Pte. Ltd., SingaporeGoogle Scholar
  3. Anderson J, Chris GVDW (2009) Fundamentals of zinc oxide as a semiconductor. Rep Prog Phys 72(12):126501CrossRefGoogle Scholar
  4. Asahi R et al (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293(5528):269–271CrossRefGoogle Scholar
  5. Asiri AM et al (2014) Enhanced visible light photodegradation of water pollutants over N-, S-doped titanium dioxide and n-titanium dioxide in the presence of inorganic anions. J Saudi Chem Soc 18(2):155–163CrossRefGoogle Scholar
  6. Bae SY, Seo HW, Park J (2004) Vertically aligned sulfur-doped ZnO nanowires synthesized via chemical vapor deposition. J Phys Chem B 108(17):5206–5210. CrossRefGoogle Scholar
  7. Bakar SA, Ribeiro C (2016) Prospective aspects of preferential {001} facets of N, S-co-doped TiO 2 photocatalysts for visible-light-responsive photocatalytic activity. RSC Adv 6(92):89274–89287CrossRefGoogle Scholar
  8. Batzill M, Morales EH, Diebold U (2006) Influence of nitrogen doping on the defect formation and surface properties of TiO 2 rutile and anatase. Phys Rev Lett 96(2):026103CrossRefGoogle Scholar
  9. Behera O (2011) Synthesis and characterization of ZnO nanoparticles of various sizes and applications in biological systemsGoogle Scholar
  10. Behpour M, Foulady-Dehaghi R, Mir N (2017) Considering photocatalytic activity of N/F/S-doped TiO 2 thin films in degradation of textile waste under visible and sunlight irradiation. Sol Energy 158:636–643CrossRefGoogle Scholar
  11. Bian J et al (2004) Deposition and electrical properties of N–In codoped p-type ZnO films by ultrasonic spray pyrolysis. Appl Phys Lett 84(4):541–543CrossRefGoogle Scholar
  12. Boningari T et al (2018) Novel one-step synthesis of sulfur doped-TiO 2 by flame spray pyrolysis for visible light photocatalytic degradation of acetaldehyde. Chem Eng J.
  13. Brindha A, Sivakumar T (2017) Visible active N, S co-doped TiO2/graphene photocatalysts for the degradation of hazardous dyes. J Photochem Photobiol A Chem 340:146–156CrossRefGoogle Scholar
  14. Byrappa K, Yoshimura M (2001) Handbook of hydrothermal technology – a technology for crystal growth and materials processing. William Andrew Publishing/Noyes, Park RidgeGoogle Scholar
  15. Cai A et al (2017) Hierarchical ZnO/S,N:GQD composites: biotemplated synthesis and enhanced visible-light-driven photocatalytic activity. Appl Surf Sci 391:484–490. CrossRefGoogle Scholar
  16. Chen D et al (2007) Carbon and nitrogen co-doped TiO2 with enhanced visible-light photocatalytic activity. Ind Eng Chem Res 46(9):2741–2746. CrossRefGoogle Scholar
  17. Chen L-C et al (2008) Characterization and photoreactivity of N-, S-, and C-doped ZnO under UV and visible light illumination. J Photochem Photobiol A Chem 199(2–3):170–178CrossRefGoogle Scholar
  18. Cheng X, Yu X, Xing Z (2012) One-step synthesis of visible active CNS-tridoped TiO2 photocatalyst from biomolecule cystine. Appl Surf Sci 258(19):7644–7650CrossRefGoogle Scholar
  19. Cinelli G et al (2017) Photocatalytic degradation of a model textile dye using carbon-doped titanium dioxide and visible light. J Water Process Eng 20:71–77CrossRefGoogle Scholar
  20. Coleman V, Jagadish C (2006) Zinc oxide bulk, thin films and nanostructures. Elsevier, London, pp 1–5CrossRefGoogle Scholar
  21. Cong Y et al (2007) Synthesis and characterization of nitrogen-doped TiO2 Nanophotocatalyst with high visible light activity. J Phys Chem C 111(19):6976–6982. CrossRefGoogle Scholar
  22. Daghrir R, Drogui P, Robert D (2013) Modified TiO2 for environmental photocatalytic applications: a review. Ind Eng Chem Res 52(10):3581–3599CrossRefGoogle Scholar
  23. Daneshvar N, Salari D, Khataee AR (2004) Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2. J Photochem Photobiol A Chem 162(2):317–322. CrossRefGoogle Scholar
  24. Devi LG, Kavitha R (2013) A review on non metal ion doped titania for the photocatalytic degradation of organic pollutants under UV/solar light: role of photogenerated charge carrier dynamics in enhancing the activity. Appl Catal B Environ 140–141:559–587. CrossRefGoogle Scholar
  25. Dindar B, Içli S (2001) Unusual photoreactivity of zinc oxide irradiated by concentrated sunlight. J Photochem Photobiol A Chem 140(3):263–268CrossRefGoogle Scholar
  26. Dolat D et al (2012) One-step, hydrothermal synthesis of nitrogen, carbon co-doped titanium dioxide (N, CTiO2) photocatalysts. Effect of alcohol degree and chain length as carbon dopant precursors on photocatalytic activity and catalyst deactivation. Appl Catal B Environ 115:81–89CrossRefGoogle Scholar
  27. Dubbaka S (2011) Branched zinc oxide nanostructures: synthesis and photo catalysis study for application in dye sensitized solar cells. BiblioBazaarGoogle Scholar
  28. Dubey PK et al (2017) Synthesis of self-aligned and vertically oriented carbon incorporated titania nanotube for improved photoelectrochemical hydrogen generation. Int J Hydrog Energy 42(8):4782–4792CrossRefGoogle Scholar
  29. Emeline A et al (2007) Photoinduced formation of defects and nitrogen stabilization of color centers in N-doped titanium dioxide. J Phys Chem C 111(30):11456–11462CrossRefGoogle Scholar
  30. Eslami A et al (2016) N, S co-doped TiO2 nanoparticles and nanosheets in simulated solar light for photocatalytic degradation of non-steroidal anti-inflammatory drugs in water: a comparative study. J Chem Technol Biotechnol 91(10):2693–2704CrossRefGoogle Scholar
  31. Fang T-H, Chang W-J, Lin C-M (2007) Nanoindentation characterization of ZnO thin films. Mater Sci Eng A 452–453:715–720. CrossRefGoogle Scholar
  32. Ferrari-Lima A et al (2015) Synthesis, characterisation and photocatalytic activity of N-doped TiO2–Nb2O5 mixed oxides. Catal Today 254:119–128CrossRefGoogle Scholar
  33. Gaikwad P et al (2016) Improvement of photocatalytic activity of TiO2-WO3 nanocomposite by the anionically substituted N and S. Colloids Surf A Physicochem Eng Asp 506:804–811CrossRefGoogle Scholar
  34. Gao H-T et al (2011) Synthesis, characterization, and theoretical study of N, S-codoped nano-TiO 2 with photocatalytic activities. Int J Miner Metall Mater 18(5):606CrossRefGoogle Scholar
  35. Ghasemi S et al (2009) Kinetics investigation of the photocatalytic degradation of acid blue 92 in aqueous solution using nanocrystalline TiO2 prepared in an ionic liquid. Prog React Kinet Mech 34(1):55–76. CrossRefGoogle Scholar
  36. Giannakas A et al (2016) Characterization and catalytic performance of B-doped, B–N co-doped and B–N–F tri-doped TiO2 towards simultaneous Cr (VI) reduction and benzoic acid oxidation. Appl Catal B Environ 184:44–54CrossRefGoogle Scholar
  37. Grätzel M (2001) Sol-gel processed TiO2 films for photovoltaic applications. J Sol-Gel Sci Technol 22(1–2):7–13CrossRefGoogle Scholar
  38. Guo Y et al (2009) Uniform carbon-coated ZnO nanorods: microwave-assisted preparation, cytotoxicity, and photocatalytic activity. Langmuir 25(8):4678–4684CrossRefGoogle Scholar
  39. Hamadanian M, Rostami M, Jabbari V (2017) Graphene-supported C–N–S tridoped TiO2 photo-catalyst with improved band gap and charge transfer properties. J Mater Sci Mater Electron 28(20):15637–15646CrossRefGoogle Scholar
  40. Han C et al (2014) The effect of solvent in the sol–gel synthesis of visible light-activated, sulfur-doped TiO2 nanostructured porous films for water treatment. Catal Today 224:132–139CrossRefGoogle Scholar
  41. Hassen D et al (2016) Nitrogen-doped carbon-embedded TiO2 nanofibers as promising oxygen reduction reaction electrocatalysts. J Power Sources 330:292–303CrossRefGoogle Scholar
  42. Hernández JV et al (2017) Effects of metal doping (Cu, Ag, Eu) on the electronic and optical behavior of nanostructured TiO2. J Alloys Compd 710:355–363CrossRefGoogle Scholar
  43. Herring NP, Panchakarla LS, El-Shall MS (2014) P-type nitrogen-doped ZnO nanostructures with controlled shape and doping level by facile microwave synthesis. Langmuir 30(8):2230–2240. CrossRefGoogle Scholar
  44. Huang D-G et al (2006) Preparation of visible-light responsive N–F-codoped TiO2 photocatalyst by a sol–gel-solvothermal method. J Photochem Photobiol A Chem 184(3):282–288CrossRefGoogle Scholar
  45. Huang N et al (2015) One-step pyrolytic synthesis of ZnO nanorods with enhanced photocatalytic activity and high photostability under visible light and UV light irradiation. J Alloys Compd 648:919–929. CrossRefGoogle Scholar
  46. Huang W et al (2017) Synthesis of highly water-dispersible N-doped anatase titania based on low temperature solvent-thermal method. Arab J Chem 11:871–879CrossRefGoogle Scholar
  47. Huo R et al (2016) Preparation of W and N, S-codoped titanium dioxide with enhanced photocatalytic activity under visible light irradiation. Mater Res Bull 76:72–78CrossRefGoogle Scholar
  48. Inoue M et al (1997) Glycothermal reaction of rare-earth acetate and iron acetylacetonate: formation of hexagonal ReFeO3. J Am Ceram Soc 80(8):2157–2160CrossRefGoogle Scholar
  49. Irie H, Watanabe Y, Hashimoto K (2003) Nitrogen-concentration dependence on photocatalytic activity of TiO2-x N x powders. J Phys Chem B 107(23):5483–5486CrossRefGoogle Scholar
  50. Jahedi MZ et al (2009) Direct manufacturing of titanium parts by cold spray. Mater Sci Forum 618–619:505–508. CrossRefGoogle Scholar
  51. Jia T et al (2018) Facile synthesis and characterization of N-doped TiO2/C nanocomposites with enhanced visible-light photocatalytic performance. Appl Surf Sci 430:438–447CrossRefGoogle Scholar
  52. Jianfeng G et al (2010) Photodegradation of rhodamine B on sulfur doped ZnO/TiO2 nanocomposite photocatalyst under visible-light irradiation. Chin J Chem 28(11):2144–2150. CrossRefGoogle Scholar
  53. Jing L et al (2013) Surface tuning for oxide-based nanomaterials as efficient photocatalysts. Chem Soc Rev 42(24):9509–9549CrossRefGoogle Scholar
  54. Johnston JH, Small AC (2011) Photoactivity of nano-structured calcium silicate–titanium dioxide composite materials. J Mater Chem 21(4):1240–1245CrossRefGoogle Scholar
  55. Judeinstein P, Sanchez C (1996) Hybrid organic–inorganic materials: a land of multidisciplinarity. J Mater Chem 6(4):511–525CrossRefGoogle Scholar
  56. Kang M (2003) Synthesis of Fe/TiO2 photocatalyst with nanometer size by solvothermal method and the effect of H2O addition on structural stability and photodecomposition of methanol. J Mol Catal A Chem 197(1–2):173–183CrossRefGoogle Scholar
  57. Kato S et al (2005) Photocatalytic degradation of gaseous sulfur compounds by silver-deposited titanium dioxide. Appl Catal B Environ 57(2):109–115CrossRefGoogle Scholar
  58. Kaur A, Kansal SK et al (2016) Chem Eng J 302:194–203. CrossRefGoogle Scholar
  59. Khalilian H et al (2015) Immobilization of S, N-codoped TiO2 nanoparticles on glass beads for photocatalytic degradation of methyl orange by fixed bed photoreactor under visible and sunlight irradiation. Sol Energy 112:239–245CrossRefGoogle Scholar
  60. Kumar SG, Devi LG (2011) Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. Chem A Eur J 115(46):13211–13241Google Scholar
  61. Kwade A (1999) Determination of the most important grinding mechanism in stirred media mills by calculating stress intensity and stress number. Powder Technol 105(1):382–388. CrossRefGoogle Scholar
  62. Lai Y et al (2011) Photoluminescence and photocatalysis of the flower-like nano-ZnO photocatalysts prepared by a facile hydrothermal method with or without ultrasonic assistance. Appl Catal B Environ 105(3–4):335–345CrossRefGoogle Scholar
  63. Li F et al (2017) Preparation and photocatalytic properties of porous C and N co-doped TiO2 deposited on brick by a fast, one-step microwave irradiation method. J Environ Sci 60:24–32CrossRefGoogle Scholar
  64. Li Y et al (2018) Hydrogen production from organic fatty acids using carbon-doped TiO 2 nanoparticles under visible light irradiation. Int J Hydrog Energy 43:4335–4346CrossRefGoogle Scholar
  65. Liang P et al (2016) Photocatalysis of C, N-doped ZnO derived from ZIF-8 for dye degradation and water oxidation. RSC Adv 6(98):95903–95909. CrossRefGoogle Scholar
  66. Lin X et al (2013) Synthesis and enhanced visible-light responsive of C, N, S-tridoped TiO2 hollow spheres. J Environ Sci 25(10):2150–2156CrossRefGoogle Scholar
  67. Liu S-H, Syu H-R (2013) High visible-light photocatalytic hydrogen evolution of C, N-codoped mesoporous TiO2 nanoparticles prepared via an ionic-liquid-template approach. Int J Hydrog Energy 38(32):13856–13865CrossRefGoogle Scholar
  68. Lokhande BJ, Patil PS, Uplane MD (2001) Studies on structural, optical and electrical properties of boron doped zinc oxide films prepared by spray pyrolysis technique. Phys B Condens Matter 302–303:59–63. CrossRefGoogle Scholar
  69. Lu JG et al (2006) ZnO quantum dots synthesized by a vapor phase transport process. Appl Phys Lett 88(6):063110. CrossRefGoogle Scholar
  70. Lu J et al (2017) In situ synthesis of mesoporous C-doped TiO2 single crystal with oxygen vacancy and its enhanced sunlight photocatalytic properties. Dyes Pigments 144:203–211CrossRefGoogle Scholar
  71. Macías-Sánchez J et al (2015) Synthesis of nitrogen-doped ZnO by sol–gel method: characterization and its application on visible photocatalytic degradation of 2, 4-D and picloram herbicides. Photochem Photobiol Sci 14(3):536–542CrossRefGoogle Scholar
  72. Malengreaux CM et al (2014) How to modify the photocatalytic activity of TiO2 thin films through their roughness by using additives. A relation between kinetics, morphology and synthesis. Chem Eng J 243:537–548CrossRefGoogle Scholar
  73. Mandari KK et al (2018) Rare earth metal Gd influenced defect sites in N doped TiO 2: defect mediated improved charge transfer for enhanced photocatalytic hydrogen production. Int J Hydrog Energy 43:2073–2082CrossRefGoogle Scholar
  74. Matos J et al (2016) Nanostructured hybrid TiO2-C for the photocatalytic conversion of phenol. Sol Energy 134:64–71CrossRefGoogle Scholar
  75. Moore D, Wang ZL (2006) Growth of anisotropic one-dimensional ZnS nanostructures. J Mater Chem 16(40):3898–3905. CrossRefGoogle Scholar
  76. Nagaveni K et al (2004) Synthesis and structure of nanocrystalline TiO2 with lower band gap showing high photocatalytic activity. Langmuir 20(7):2900–2907. CrossRefGoogle Scholar
  77. Nasirian M et al (2017) Enhancement of photocatalytic activity of titanium dioxide using non-metal doping methods under visible light: a review. Int J Environ Sci Technol.
  78. Oliveira JA et al (2018) Photoactivity of N-doped ZnO nanoparticles in oxidative and reductive reactions. Appl Surf Sci 433:879–886. CrossRefGoogle Scholar
  79. Özgür Ü et al (2005) A comprehensive review of ZnO materials and devices. J Appl Phys 98(4):041301. CrossRefGoogle Scholar
  80. Palaniandy P, Aziz HBA, Feroz S (2015) Evaluating the TiO2 as a solar photocatalyst process by response surface methodology to treat the petroleum waste water. Karbala Int J Mod Sci 1(2):78–85CrossRefGoogle Scholar
  81. Patil AB, Patil KR, Pardeshi SK (2010) Ecofriendly synthesis and solar photocatalytic activity of S-doped ZnO. J Hazard Mater 183(1–3):315–323CrossRefGoogle Scholar
  82. Patil AB, Patil KR, Pardeshi SK (2011) Enhancement of oxygen vacancies and solar photocatalytic activity of zinc oxide by incorporation of nonmetal. J Solid State Chem 184(12):3273–3279. CrossRefGoogle Scholar
  83. Pawar BN, Jadkar SR, Takwale MG (2005) Deposition and characterization of transparent and conductive sprayed ZnO:B thin films. J Phys Chem Solids 66(10):1779–1782. CrossRefGoogle Scholar
  84. Pawar BN et al (2009) Preparation of transparent and conducting boron-doped ZnO electrode for its application in dye-sensitized solar cells. Sol Energy Mater Sol Cells 93(4):524–527. CrossRefGoogle Scholar
  85. Peng WQ et al (2006) Synthesis and temperature-dependent near-band-edge emission of chain-like Mg-doped ZnO nanoparticles. Appl Phys Lett 88(10):101902. CrossRefGoogle Scholar
  86. Porter FC (1991) Zinc handbook: properties, processing, and use in design. CRC Press, Boca RatonCrossRefGoogle Scholar
  87. Powell MJ, Dunnill CW, Parkin IP (2014) N-doped TiO2 visible light photocatalyst films via a sol–gel route using TMEDA as the nitrogen source. J Photochem Photobiol A Chem 281:27–34CrossRefGoogle Scholar
  88. Preethi L et al (2016) Nitrogen doped anatase-rutile heterostructured nanotubes for enhanced photocatalytic hydrogen production: promising structure for sustainable fuel production. Int J Hydrog Energy 41(14):5865–5877CrossRefGoogle Scholar
  89. Qin H et al (2011) Photocatalytic activity of heterostructures based on ZnO and N-doped ZnO. ACS Appl Mater Interfaces 3(8):3152–3156. CrossRefGoogle Scholar
  90. Qiu Y et al (2012) Secondary branching and nitrogen doping of ZnO nanotetrapods: building a highly active network for photoelectrochemical water splitting. Nano Lett 12(1):407–413. CrossRefGoogle Scholar
  91. Rajbongshi BM, Ramchiary A, Samdarshi SK (2014) Influence of N-doping on photocatalytic activity of ZnO nanoparticles under visible light irradiation. Mater Lett 134:111–114. CrossRefGoogle Scholar
  92. Ramandi S, Entezari MH, Ghows N (2017) Sono-synthesis of solar light responsive S–N–C–tri doped TiO2 photo-catalyst under optimized conditions for degradation and mineralization of diclofenac. Ultrason Sonochem 38:234–245CrossRefGoogle Scholar
  93. Rangel-Mendez JR et al (2018) Microwave-assisted synthesis of C-doped TiO2 and ZnO hybrid nanostructured materials as quantum-dots sensitized solar cells. Appl Surf Sci 434:744–755CrossRefGoogle Scholar
  94. Rattanakam R, Supothina S (2009) Visible-light-sensitive N-doped TiO 2 photocatalysts prepared by a mechanochemical method: effect of a nitrogen source. Res Chem Intermed 35(3):263–269CrossRefGoogle Scholar
  95. Rengaraj S et al (2007) Preparation, characterization and application of Nd–TiO2 photocatalyst for the reduction of Cr(VI) under UV light illumination. Appl Catal B Environ 77(1):157–165. CrossRefGoogle Scholar
  96. Rengifo-Herrera J et al (2008) Escherichia coli inactivation by N, S co-doped commercial TiO2 powders under UV and visible light. Appl Catal B Environ 84(3–4):448–456CrossRefGoogle Scholar
  97. Rengifo-Herrera JA et al (2010) Synthesis, characterization, and photocatalytic activities of nanoparticulate N, S-codoped TiO2 having different surface-to-volume ratios. J Phys Chem C 114(6):2717–2723CrossRefGoogle Scholar
  98. Reynolds DC, Look DC, Jogai B (1996) Optically pumped ultraviolet lasing from ZnO. Solid State Commun 99(12):873–875. CrossRefGoogle Scholar
  99. Saggioro EM et al (2011) Use of titanium dioxide photocatalysis on the remediation of model textile wastewaters containing azo dyes. Molecules 16(12):10370–10386CrossRefGoogle Scholar
  100. Scarisoreanu M et al (2014) Enhancing the visible light absorption of titania nanoparticles by S and C doping in a single-step process. Appl Surf Sci 302:11–18CrossRefGoogle Scholar
  101. Sen S et al (2005) Investigation on sol–gel synthesized Ag-doped TiO2 cermet thin films. Thin Solid Films 474(1–2):245–249CrossRefGoogle Scholar
  102. Shifu C et al (2009) Preparation, characterization and photocatalytic activity of N-containing ZnO powder. Chem Eng J 148(2):263–269. CrossRefGoogle Scholar
  103. Spanos N, Georgiadou I, Lycourghiotis A (1995) Investigation of rultile, anatase, and Industrial Titania/water solution interfaces using potentiometric titration and microelectrophoreses. J Collide Interface Sci 172:374–382CrossRefGoogle Scholar
  104. Stavale F et al (2014) Luminescence properties of nitrogen-doped ZnO. J Phys Chem C 118(25):13693–13696. CrossRefGoogle Scholar
  105. Sudrajat H, Babel S (2016) Comparison and mechanism of photocatalytic activities of N-ZnO and N-ZrO2 for the degradation of rhodamine 6G. Environ Sci Pollut Res 23(10):10177–10188. CrossRefGoogle Scholar
  106. Sudrajat H, Babel S (2017) A novel visible light active N-doped ZnO for photocatalytic degradation of dyes. J Water Process Eng 16:309–318. CrossRefGoogle Scholar
  107. Sun H et al (2008) Visible-light-driven TiO2 catalysts doped with low-concentration nitrogen species. Sol Energy Mater Sol Cells 92(1):76–83CrossRefGoogle Scholar
  108. Sun S et al (2017) Full visible-light absorption of TiO2 nanotubes induced by anionic S22− doping and their greatly enhanced photocatalytic hydrogen production abilities. Appl Catal B Environ 206:168–174CrossRefGoogle Scholar
  109. Sushma C, Kumar SG (2017) C–N–S tridoping into TiO 2 matrix for photocatalytic applications: observations, speculations and contradictions in the codoping process. Inorg Chem Front 4(8):1250–1267CrossRefGoogle Scholar
  110. Wang C-C, Ying JY (1999) Sol− gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals. Chem Mater 11(11):3113–3120CrossRefGoogle Scholar
  111. Wang XH et al (2007) Synthesis of sulfur-doped ZnO nanowires by electrochemical deposition. Mater Sci Semicond Process 10(6):241–245. CrossRefGoogle Scholar
  112. Wang Y et al (2009) Biomolecule-controlled hydrothermal synthesis of C–N–S-tridoped TiO2 nanocrystalline photocatalysts for NO removal under simulated solar light irradiation. J Hazard Mater 169(1–3):77–87CrossRefGoogle Scholar
  113. Wang F et al (2017) C, N and S codoped rutile TiO2 nanorods for enhanced visible-light photocatalytic activity. Mater Lett 195:143–146CrossRefGoogle Scholar
  114. Wang P et al (2018) Understanding the charge separation and transfer in mesoporous carbonate-doped phase-junction TiO 2 nanotubes for photocatalytic hydrogen production. Appl Catal B Environ 225:433–444CrossRefGoogle Scholar
  115. Wei F, Ni L, Cui P (2008) Preparation and characterization of N–S-codoped TiO2 photocatalyst and its photocatalytic activity. J Hazard Mater 156(1–3):135–140CrossRefGoogle Scholar
  116. Wei X-N et al (2017) Facile synthesis of tunable carbon modified mesoporous TiO2 for visible light photocatalytic application. Appl Surf Sci 412:357–365CrossRefGoogle Scholar
  117. Wenas WW et al (1991) Electrical and optical properties of boron-doped ZnO thin films for solar cells grown by metalorganic chemical vapor deposition. J Appl Phys 70(11):7119–7123. CrossRefGoogle Scholar
  118. Xue J et al (2015) Facile synthesis of ZnO-C nanocomposites with enhanced photocatalytic activity. New J Chem 39(3):1852–1857. CrossRefGoogle Scholar
  119. Yadav A, Yadav BC (2014) A mechanochemical synthesis of nanostructured zinc oxide via acetate route for LPG sensing. J Exp Nanosci 9(5):501–511. CrossRefGoogle Scholar
  120. Yan X et al (2017) In-situ CNS-tridoped single crystal black TiO2 nanosheets with exposed {001} facets as efficient visible-light-driven photocatalysts. Appl Catal B Environ 219:572–579CrossRefGoogle Scholar
  121. Yang X et al (2009a) Photo-catalytic degradation of rhodamine B on C-, S-, N-, and Fe-doped TiO2 under visible-light irradiation. Appl Catal B Environ 91(3–4):657–662CrossRefGoogle Scholar
  122. Yang X et al (2009b) Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting. Nano Lett 9(6):2331–2336. CrossRefGoogle Scholar
  123. Yang G et al (2010) Preparation of highly visible-light active N-doped TiO 2 photocatalyst. J Mater Chem 20(25):5301–5309CrossRefGoogle Scholar
  124. Yin S et al (2003) Preparation of visible light-activated titania photocatalyst by mechanochemical method. Chem Lett 32(4):358–359CrossRefGoogle Scholar
  125. Yu C et al (2012a) A sonochemical route to fabricate the novel porous F, Ce-codoped TiO 2 photocatalyst with efficient photocatalytic performance. J Porous Mater 19(5):903–911CrossRefGoogle Scholar
  126. Yu C et al (2012b) A sonochemical route to fabricate the novel porous F, Ce-codoped TiO2 photocatalyst with efficient photocatalytic performance. J Porous Mater 19(5):903–911. CrossRefGoogle Scholar
  127. Yu W, Zhang J, Peng T (2016) New insight into the enhanced photocatalytic activity of N-, C- and S-doped ZnO photocatalysts. Appl Catal B Environ 181:220–227. CrossRefGoogle Scholar
  128. Zhang J (2016) Introduction, in transport studies of the electrical, magnetic and thermoelectric properties of topological insulator thin films. Springer, Berlin/Heidelberg, pp 1–21Google Scholar
  129. Zhang L, Chen D, Jiao X (2006) Monoclinic structured BiVO4 nanosheets: hydrothermal preparation, formation mechanism, and coloristic and photocatalytic properties. J Phys Chem B 110(6):2668–2673CrossRefGoogle Scholar
  130. Zhang J et al (2010) Development of modified N doped TiO 2 photocatalyst with metals, nonmetals and metal oxides. Energy Environ Sci 3(6):715–726CrossRefGoogle Scholar
  131. Zhang D et al (2013) A facile method for synthesis of N-doped ZnO mesoporous nanospheres and enhanced photocatalytic activity. Dalton Trans 42(47):16556–16561. CrossRefGoogle Scholar
  132. Zhang X et al (2014) Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods. Sci Rep 4:4596. CrossRefGoogle Scholar
  133. Zhang Y et al (2015) C-doped hollow TiO2 spheres: in situ synthesis, controlled shell thickness, and superior visible-light photocatalytic activity. Appl Catal B Environ 165:715–722CrossRefGoogle Scholar
  134. Zhang Y, Yang HM, Park S-J (2018) Synthesis and characterization of nitrogen-doped TiO 2 coatings on reduced graphene oxide for enhancing the visible light photocatalytic activity. Curr Appl Phys 18(2):163–169CrossRefGoogle Scholar
  135. Zhiyong Y et al (2007) ZnSO4–TiO2 doped catalyst with higher activity in photocatalytic processes. Appl Catal B Environ 76(1):185–195. CrossRefGoogle Scholar
  136. Zhou FL, Gong RH, Porat I (2009a) Polymeric nanofibers via flat spinneret electrospinning. Polym Eng Sci 49(12):2475–2481CrossRefGoogle Scholar
  137. Zhou X et al (2009b) Synthesis, characterization and its visible-light-induced photocatalytic property of carbon doped ZnO. Mater Lett 63(20):1747–1749. CrossRefGoogle Scholar
  138. Zhou Q et al (2013) Hydrothermal synthesis of various hierarchical ZnO nanostructures and their methane sensing properties. Sensors 13(5):6171CrossRefGoogle Scholar
  139. Zhu Y-P et al (2014) Carbon-doped ZnO hybridized homogeneously with graphitic carbon nitride nanocomposites for photocatalysis. J Phys Chem C 118(20):10963–10971. CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • M. S. Jyothi
    • 1
  • Vignesh Nayak
    • 2
  • Kakarla Raghava Reddy
    • 3
  • S. Naveen
    • 4
  • A. V. Raghu
    • 4
  1. 1.Department of Chemical Technology, Faculty of SciencesChulalongkorn UniversityBangkokThailand
  2. 2.Center for Nano and Material sciencesJain UniversityBangaloreIndia
  3. 3.School of Chemical & Biomolecular EngineeringThe University of SydneySydneyAustralia
  4. 4.Department of Basic Sciences, School of Engineering and Technology, CETJain UniversityBangaloreIndia

Personalised recommendations