Electrodeposition of Composite Coatings as a Method for Immobilizing TiO2 Photocatalyst

  • V. S. Protsenko
  • A. A. Kityk
  • E. A. Vasil’eva
  • A. V. Tsurkan
  • F. I. Danilov
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 29)


In order to immobilize the TiO2 photocatalyst particles, various kinds of supports can be used. One of these involves the electrodeposition of metal matrices with entrapped titania particles. This work focuses on the electrodeposition and characterization of two new types of photocatalytic composite coatings. The first part of the chapter deals with the electrodeposition of Fe/TiO2 composite coatings using environmentally friendly aqueous methanesulfonate iron plating baths containing colloidal TiO2 particles. The effects of bath composition and electrolysis conditions on the content of titania particles in coatings were investigated; the surface morphology, microstructure, and microhardness of coatings were characterized. The photocatalytic performance of Fe/TiO2 electrodeposited coatings was evaluated in the reactions of decomposition of methyl orange and methylene blue dyes in water under the action of ultraviolet radiation. Although iron electrodeposited matrix is cheap, nontoxic, and easily repairable support for TiO2 photocatalysts, it is not corrosion-resistant enough. Therefore, special attention is needed to improve the corrosion resistance of photocatalytic Fe/TiO2 composite coatings via the electrodeposition of a protective ceria layer on their surface. The second part of this chapter is devoted to the electrodeposition of photocatalytic Ni/TiO2 composite coatings from colloidal electrolyte based on deep eutectic solvents which are now considered as promising analogues of room temperature ionic liquids. The fabrication of Ni/TiO2 composites from choline chloride based plating bath is reported. The Ni/TiO2 composite coatings manifest a photocatalytic activity toward the reaction of photochemical degradation of methylene blue organic dye in water solution.


Immobilized TiO2 Photocatalyst Composite Coatings Electrodeposition Fe/TiO2 Ni/TiO2 Methanesulfonate electrolyte Deep eutectic solvents 


  1. Abbott AP, McKenzie KJ (2006) Application of ionic liquids to the electrodeposition of metals. Phys Chem Chem Phys 8:4265–4279. CrossRefGoogle Scholar
  2. Abbott AP, Ryder KS, König U (2008) Electrofinishing of metals using eutectic based ionic liquids. Trans Inst Met Finish 86:196–204. CrossRefGoogle Scholar
  3. Abbott AP, El Ttaib K, Frisch G et al (2009) Electrodeposition of copper composites from deep eutectic solvents based on choline chloride. Phys Chem Chem Phys 11:4269–4277. CrossRefGoogle Scholar
  4. Abbott AP, El Ttaib K, Frisch G et al (2012) The electrodeposition of silver composites using deep eutectic solvents. Phys Chem Chem Phys 14:2443–2449. CrossRefGoogle Scholar
  5. Abbott AP, Frisch G, Ryder KS (2013) Electroplating using ionic liquids. Annu Rev Mater Res 43:335–358. CrossRefGoogle Scholar
  6. Abbott AP, Ballantyne A, Harris RC et al (2015) A comparative study of nickel electrodeposition using deep eutectic solvents and aqueous solutions. Electrochim Acta 176:718–726. CrossRefGoogle Scholar
  7. Ahmad R, Ahmad Z, Khan AU et al (2016) Photocatalytic systems as an advanced environmental remediation: recent developments, limitations and new avenues for applications. J Environ Chem Eng 4:4143–4164. CrossRefGoogle Scholar
  8. Bahadormanesh B, Dolati A (2010) The kinetics of Ni-Co/SiC composite coatings electrodeposition. J Alloys Compd 504:514–518. CrossRefGoogle Scholar
  9. Baura-Peña MP, Martínez-Lope MJ, García-Clave ME (1991) Synthesis and characterization of a hydrated titanium(IV) oxide. Thermochim Acta 179:89–97. CrossRefGoogle Scholar
  10. Bobrova LS, Danilov FI, Protsenko VS (2016) Effects of temperature and water content on physicochemical properties of ionic liquids containing CrCl3·xH2O and choline chloride. J Mol Liq 223:48–53. CrossRefGoogle Scholar
  11. Chen W, Gao W (2010) Sol-enhanced electroplating of nanostructured Ni–TiO2 composite coatings – the effects of sol concentration on the mechanical and corrosion properties. Electrochim Acta 55:6865–6871. CrossRefGoogle Scholar
  12. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959. CrossRefGoogle Scholar
  13. Chen W, He Y, Gao W (2010a) Electrodeposition of sol-enhanced nanostructured Ni-TiO2 composite coatings. Surf Coat Technol 204:2487–2492. CrossRefGoogle Scholar
  14. Chen W, Gao W, He Y (2010b) A novel electroless plating of Ni–P–TiO2 nano-composite coatings. Surf Coat Technol 204:2493–2498. CrossRefGoogle Scholar
  15. Costovici S, Manea AC, Visan T et al (2016) Investigation of Ni-Mo and Co-Mo alloys electrodeposition involving choline chloride based ionic liquids. Electrochim Acta 207:97–111. CrossRefGoogle Scholar
  16. Creus J, Brezault F, Rebere C et al (2006) Synthesis and characterisation of thin cerium oxide coatings elaborated by cathodic electrolytic deposition on steel substrate. Surf Coat Technol 200:4636–4645. CrossRefGoogle Scholar
  17. Danilov FI, Protsenko VS, Kityk AA (2014) Estimation of the protective ability of chromium coatings deposited from sulfate and methanesulfonate electrolytes based on Cr(III). Prot Met Phys Chem Surf 50:672–678. CrossRefGoogle Scholar
  18. Danilov FI, Tsurkan AV, Vasil’eva EA et al (2016) Electrocatalytic activity of composite Fe/TiO2 electrodeposits for hydrogen evolution reaction in alkaline solutions. Int J Hydrog Energy 41:7363–7372. CrossRefGoogle Scholar
  19. Danilov FI, Tsurkan AV, Vasil’eva EA et al (2017) Electrochemical synthesis and properties of iron–titanium dioxide composite coatings. Russ J Appl Chem 90:1148–1153. CrossRefGoogle Scholar
  20. Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C 1:1–21. CrossRefGoogle Scholar
  21. Gernon MD, Wu M, Buszta T et al (1999) Environmental benefits of methanesulfonic acid: comparative properties and advantages. Green Chem 1:127–140. CrossRefGoogle Scholar
  22. Ghosh S, Roy S (2014) Electrochemical copper deposition from an ethaline-CuCl2·2H2O DES. Surf Coat Technol 238:165–173. CrossRefGoogle Scholar
  23. Ghosh S, Roy S (2015) Codeposition of Cu-Sn from ethaline deep eutectic solvent. Electrochim Acta 183:27–36. CrossRefGoogle Scholar
  24. Glaze WH, Kang JW, Chapin DH (1987) The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone Sci Eng 9:335–352. CrossRefGoogle Scholar
  25. Guergova D, Stoyanova E, Stoychev D et al (2015) Self-healing effect of ceria electrodeposited thin films on stainless steel in aggressive 0.5 mol/L NaCl aqueous solution. J Rare Earths 33:1212–1227. CrossRefGoogle Scholar
  26. Guglielmi N (1972) Kinetics of the deposition of inert particles from electrolytic baths. J Electrochem Soc 119:1009–1012. CrossRefGoogle Scholar
  27. Guillard C, Puzenat E, Lachheb H et al (2005) Why inorganic salts decrease the TiO2 photocatalytic efficiency. Int J Photoenergy 7:1–9. CrossRefGoogle Scholar
  28. Hamlaoui Y, Pedraza F, Remazeilles C et al (2009) Cathodic electrodeposition of cerium-based oxides on carbon steel from concentrated cerium nitrate solutions. Part I. Electrochemical and analytical characterisation. Mater Chem Phys 113:650–657. CrossRefGoogle Scholar
  29. Hamlaoui Y, Tifouti L, Remazeilles C et al (2010) Cathodic electrodeposition of cerium based oxides on carbon steel from concentrated cerium nitrate. Part II: influence of electrodeposition parameters and of the addition of PEG. Mater Chem Phys 120:172–180. CrossRefGoogle Scholar
  30. Houas A, Lachheb H, Ksibi M et al (2001) Photocatalytic degradation pathway of methylene blue in water. Appl Catal B Environ 31:145–157. CrossRefGoogle Scholar
  31. Ito S, Deguchi T, Imai K et al (1999) Preparation of highly photocatalytic nanocomposite films consisting of TiO2 particles and Zn electrodeposited on steel. Electrochem Solid-State Lett 2:440–442. CrossRefGoogle Scholar
  32. Kityk AA, Shaiderov DA, Vasil'eva EA et al (2017) Choline chloride based ionic liquids containing nickel chloride: physicochemical properties and kinetics of Ni(II) electroreduction. Electrochim Acta 245:133–145. CrossRefGoogle Scholar
  33. Lachheb H, Puzenat E, Houas A et al (2002) Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania. Appl Catal B Environ 39:75–90. CrossRefGoogle Scholar
  34. Laohhasurayotin K, Pookboonmee S (2013) Multifunctional properties of Ag/TiO2/bamboo charcoal composites: preparation and examination through several characterization methods. Appl Surf Sci 282:236–244. CrossRefGoogle Scholar
  35. Li R, Chu Q, Liang J (2015) Electrodeposition and characterization of Ni–SiC composite coatings from deep eutectic solvent. RSC Adv 5:44933–44942. CrossRefGoogle Scholar
  36. Li R, Hou Y, Liang J (2016) Electro-codeposition of Ni-SiO2 nanocomposite coatings from deep eutectic solvent with improved corrosion resistance. Appl Surf Sci 367:449–458. CrossRefGoogle Scholar
  37. Low CTJ, Wills RGA, Walsh FC (2006) Electrodeposition of composite coatings containing nanoparticles in a metal deposit. Surf Coat Technol 201:371–383. CrossRefGoogle Scholar
  38. Luan X, Wang Y (2014) Preparation and photocatalytic activity of Ag/bamboo-type TiO2 nanotube composite electrodes for methylene blue degradation. Mater Sci Semicond Process 25:43–51. CrossRefGoogle Scholar
  39. Mital Gupta S, Tripathi M (2012) A review on the synthesis of TiO2 nanoparticles by solution route. Cent Eur J Chem 10:279–294. CrossRefGoogle Scholar
  40. Mohajeri S, Dolati A, Ghorbani M (2017) The photoinduced activity of Ni-TiO2/TiO2 multilayer nanocomposites synthesized by pulse electrodeposition technique. Int J Electrochem Sci 12:5121–5141. CrossRefGoogle Scholar
  41. Mulder WH, Sluyters JH (1988) An explanation of depressed semi-circular arcs in impedance plots for irreversible electrode reactions. Electrochim Acta 33:303–310. CrossRefGoogle Scholar
  42. Musiani M (2000) Electrodeposition of composites: an expanding subject in electrochemical materials science. Electrochim Acta 45:3397–3402. CrossRefGoogle Scholar
  43. Ohtani B, Ogawa Y, Nishimoto S (1997) Photocatalytic activity of amorphous-anatase mixture of titanium(IV) oxide particles suspended in aqueous solutions. J Phys Chem B 101:3746–3752. CrossRefGoogle Scholar
  44. Ohtani B, Prieto-Mahaney OO, Li D et al (2010) What is Degussa (Evonik) P25? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity test. J Photochem Photobiol A 216:179–182. CrossRefGoogle Scholar
  45. Oturan MA, Aaron J-J (2014) Advanced oxidation processes in water/wastewater treatment: principles and applications. A review. Crit Rev Environ Sci Technol 44:2577–2641. CrossRefGoogle Scholar
  46. Pelaez M, Nolan NT, Pillai SC et al (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B Environ 125:331–349. CrossRefGoogle Scholar
  47. Pereira NM, Brincoveanu O, Pantazi AG et al (2017) Electrodeposition of Co and Co composites with carbon nanotubes using choline chloride-based ionic liquids. Surf Coat Technol 324:451–462. CrossRefGoogle Scholar
  48. Pozzo RL, Baltanás MA, Cassano AE (1997) Supported titanium oxide as photocatalyst in water decontamination: state of the art. Catal Today 39:219–231. CrossRefGoogle Scholar
  49. Protsenko VS, Vasil’eva EA, Smenova IV et al (2014) Electrodeposition of iron/titania composite coatings from methanesulfonate electrolyte. Russ J Appl Chem 87:283–288. CrossRefGoogle Scholar
  50. Protsenko VS, Vasil’eva EA, Smenova IV et al (2015a) Electrodeposition of Fe and composite Fe/ZrO2 coatings from a methanesulfonate bath. Surf Eng Appl Electrochem 51:65–75. CrossRefGoogle Scholar
  51. Protsenko VS, Kityk AA, Shaiderov DA et al (2015b) Effect of water content on physicochemical properties and electrochemical behavior of ionic liquids containing choline chloride, ethylene glycol and hydrated nickel chloride. J Mol Liq 212:716–722. CrossRefGoogle Scholar
  52. Protsenko VS, Vasil’eva EA, Tsurkan AV et al (2017) Fe/TiO2 composite coatings modified by ceria layer: electrochemical synthesis using environmentally friendly methanesulfonate electrolytes and application as photocatalysts for organic dyes degradation. J Environ Chem Eng 5:136–146. CrossRefGoogle Scholar
  53. Protsenko VS, Tsurkan AV, Vasil’eva EA et al (2018) Fabrication and characterization of multifunctional Fe/TiO2 composite coatings. Mater Res Bull 100:32–41. CrossRefGoogle Scholar
  54. Rajeshwar K, de Tacconi NR, Chenthamarakshan CR (2001) Semiconductor-based composite materials: preparation, properties, and performance. Chem Mater 13:2765–2782. CrossRefGoogle Scholar
  55. Shan AY, Ghazi TIM, Rashid SA (2010) Immobilisation of titanium dioxide onto supporting materials in heterogeneous photocatalysis: a review. Appl Catal A 389:1–8. CrossRefGoogle Scholar
  56. Sknar YE, Savchuk OO, Sknar IV et al (2017) Properties of Ni–TiO2 composites electrodeposited from methanesulfonate electrolyte. Funct Mater 24:469–475. CrossRefGoogle Scholar
  57. Smith EL, Abbott AP, Ryder KS (2014) Deep eutectic solvents (DESs) and their applications. Chem Rev 114:11060–11082. CrossRefGoogle Scholar
  58. Sonawane RS, Kale BB, Dongare MK (2004) Preparation of photo-catalytic activity of Fe–TiO2 thin films prepared by sol–gel dip coatings. Mater Chem Phys 85:52–57. CrossRefGoogle Scholar
  59. Spanou S, Kontos AI, Siokou A et al (2013) Self-cleaning behaviour of Ni/nano-TiO2 metal matrix composites. Electrochim Acta 105:324–332. CrossRefGoogle Scholar
  60. Stoychev D (2013) Corrosion protective ability of electrodeposited ceria layers. J Solid State Electrochem 17:497–509. CrossRefGoogle Scholar
  61. Thiemig D, Bund A (2008) Characterization of electrodeposited Ni–TiO2 nanocomposite coatings. Surf Coat Technol 202:2976–2984. CrossRefGoogle Scholar
  62. Vasil’eva EA, Smenova IV, Protsenko VS et al (2013) Electrodeposition of hard iron–zirconia dioxide composite coatings from a methanesulfonate electrolyte. Russ J Appl Chem 86:1735–1740. CrossRefGoogle Scholar
  63. Vasil’eva EA, Tsurkan AV, Protsenko VS et al (2016) Electrodeposition of composite Fe–TiO2 coatings from methanesulfonate electrolyte. Protect Met Phys Chem Surf 52:532–537. CrossRefGoogle Scholar
  64. Walsh FC, Ponce de Leon C (2014) A review of the electrodeposition of metal matrix composite coatings by inclusion of particles in a metal layer: an established and diversifying technology. Trans Inst Met Finish 92:83–98. CrossRefGoogle Scholar
  65. Walsh FC, Ponce de León C (2014) Versatile electrochemical coatings and surface layers from aqueous methanesulfonic acid. Surf Coat Technol 25:676–697. CrossRefGoogle Scholar
  66. Wu Z, Yang S, Wu W (2016) Shape control of inorganic nanoparticles from solution. Nanoscale 8:1237–1259. CrossRefGoogle Scholar
  67. Yang L, Pang X, Fox-Rabinovich G et al (2011) Electrodeposition of cerium oxide films and composite. Surf Coat Technol 206:1–7. CrossRefGoogle Scholar
  68. Zhou X, Shen Y (2013) Beneficial effects of CeO2 addition on microstructure and corrosion behavior of electrodeposited Ni nanocrystalline coatings. Surf Coat Technol 235:433–446. CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • V. S. Protsenko
    • 1
  • A. A. Kityk
    • 1
  • E. A. Vasil’eva
    • 1
  • A. V. Tsurkan
    • 1
  • F. I. Danilov
    • 1
  1. 1.Ukrainian State University of Chemical TechnologyDniproUkraine

Personalised recommendations