Novel Approaches for Clean Combustion in Gas Turbines

  • Medhat A. NemitallahEmail author
  • Mohamed A. Habib
  • Hassan M. Badr
Part of the Green Energy and Technology book series (GREEN)


Nowadays, power demand is growing globally, and access to reliable, affordable energy is a critical issue. The International Energy Agency (IEA) reported that, by 2020, the global economy will grow by about 3.5% annually and the total population will rise by about one billion.


  1. 1.
    International Energy Agency (2017) World energy outlookGoogle Scholar
  2. 2.
    Correa SM (1993) A review of NOx formation under gas-turbine combustion conditions. Combust Sci Technol 87(1–6):329–362CrossRefGoogle Scholar
  3. 3.
    Miller JA, Bowman CT (1989) Mechanism and modeling of nitrogen chemistry in combustion. Prog Energy Combust Sci 15:287–338CrossRefGoogle Scholar
  4. 4.
    Hayhurst AN, Lawrence AD (1992) Emissions of nitrous oxide from combustion sources. Prog Energy Combust Sci 18:529–552CrossRefGoogle Scholar
  5. 5.
    Gascoin N, Yang Q, Chetehouna K (2017) Thermal effects of CO2 on the NOx formation behavior in the CH4 diffusion combustion system. Appl Therm Eng 110:144–149CrossRefGoogle Scholar
  6. 6.
    Kang Y, Wei S, Zhang P, Lu X, Wang Q, Gou X, Huang X, Peng S, Yang D, Ji X (2017) Detailed multi-dimensional study on NOx formation and destruction mechanisms in dimethyl ether/air diffusion flame under the moderate or intense low-oxygen dilution (MILD) condition. Energy 119:1195–1211CrossRefGoogle Scholar
  7. 7.
    Zeldovich J (1946) The oxidation of nitrogen in combustion and explosions. Eur Phys J A 21:577–628Google Scholar
  8. 8.
    Layne AW (2000) Developing the next generation gas turbine systems—a national partnership. ASME Paper No. 2000-GT-176Google Scholar
  9. 9.
    Diakunchak IS, Gaul GR, McQuiggan G, Southall LR (2002) Siemens Westinghouse advanced turbine systems program final summary. ASME Paper No. GT-2002-30654Google Scholar
  10. 10.
    Der VK (1999) In: 13th U.S.–Korean joint workshop on energy and environment, Sep 1999Google Scholar
  11. 11.
    Kashir B, Tabejamaat S, Jalalatian N (2015) A numerical study on combustion characteristics of blended methane-hydrogen bluff-body stabilized swirl diffusion flames. Int J Hydrogen Energy 40:6243–6258CrossRefGoogle Scholar
  12. 12.
    Habib MA, Nemitallah MA, Ahmed P, Sharqawy MH, Badr HM, Muhammad I, Yaqub M (2015) Experimental analysis of oxygen-methane combustion inside a gas turbine reactor under various operating conditions. Energy 86:105–114CrossRefGoogle Scholar
  13. 13.
    Yu B, Lee S, Lee CE (2015) Study of NOx emission characteristics in CH4/air non-premixed flames with exhaust gas recirculation. Energy 91:119–127CrossRefGoogle Scholar
  14. 14.
    Gao X, Duan F, Lim SC, Yip MS (2013) NOx formation in hydrogen–methane turbulent diffusion flame under the moderate or intense low-oxygen dilution conditions. Energy 59:559–569CrossRefGoogle Scholar
  15. 15.
    Li YH, Chen GB, Lin YC, Chao YC (2015) Effects of flue gas recirculation on the premixed oxy-methane flames in atmospheric condition. Energy 89:845–857CrossRefGoogle Scholar
  16. 16.
    Altay HM, Hudgins DE, Speth RL, Annaswamy AM, Ghoniem AF (2010) Mitigation of thermoacoustic instability utilizing steady air injection near the flame anchoring zone. Combust Flame 157:686–700CrossRefGoogle Scholar
  17. 17.
    Ghoniem AF, Park S, Wachsman A, Annaswamy A, Wee D, Altay HM (2005) Mechanism of combustion dynamics in a backward-facing step stabilized premixed flame. Proc Combust Inst 30:1783–1790CrossRefGoogle Scholar
  18. 18.
    Lee K, Kim H, Park P, Yang S, Ko Y (2013) CO2 radiation heat loss effects on NOx emissions and combustion instabilities in lean premixed flames. Fuel 106:682–689CrossRefGoogle Scholar
  19. 19.
    Bender WR (2007) Lean premixed combustion. Technology & Management Services, Inc., Gaithersburg, MD 20879Google Scholar
  20. 20.
    Hydari NH, Yousuf AA, Ellis HM (2002) Comparison of the most recent BACT/LAER determinations for combustion turbines by state air pollution control agenciesGoogle Scholar
  21. 21.
    Calcagni J. U.S. Environmental Protection Agency, Memorandum dated June 13, 1989. Transmittal of background statement on “top down” BACTGoogle Scholar
  22. 22.
    Rashwan SS, Nemitallah MA, Habib MA (2016) Review on premixed combustion technology: stability, emission control, applications, and numerical case study. Energy Fuels 30:9981–10014CrossRefGoogle Scholar
  23. 23.
    Habib MA, Rashwan SS, Nemitallah MA, Abdelhafez AA (2017) Stability maps of non-premixed methane flames in different oxidizing environments of a gas turbine model combustor. Appl Energy 189:177–186CrossRefGoogle Scholar
  24. 24.
    Yanzhao A, Jaasim M, Vallinayagam R, Vedharaj S, Im HG, Johansson B (2018) Numerical simulation of combustion and soot under partially premixed combustion of low-octane gasoline. Fuel 211:420–431CrossRefGoogle Scholar
  25. 25.
    Yilmaz H, Cam S, Yilmaz I (2017) Effect of micro combustor geometry on combustion and emission behavior of premixed hydrogen/air flames. Energy 135:585–597CrossRefGoogle Scholar
  26. 26.
  27. 27.
    Huang X, Tummers MJ, Roekaerts DJEM (2017) Experimental and numerical study of MILD combustion in a lab-scale furnace. Energy Procedia 120:395–402CrossRefGoogle Scholar
  28. 28.
    De Joannon M, Sorrentino G, Cavaliere A (2012) MILD combustion in diffusion-controlled regimes of hot diluted fuel. Combust Flame 159:1832–1839CrossRefGoogle Scholar
  29. 29.
    Cavaliere A, De Joannon M (2004) Mild combustion. Prog Energy Combust Sci 30(4):329–366CrossRefGoogle Scholar
  30. 30.
    Chen S, Liu H, Zheng C (2012) Methane combustion in MILD oxyfuel regime: influences of dilution atmosphere in co-flow configuration. Energy 121:159–175CrossRefGoogle Scholar
  31. 31.
    Duwig C, Li B, Li ZS, Aldén M (2012) High resolution imaging of flameless and distributed turbulent combustion. Combust Flame 159(1):306–316CrossRefGoogle Scholar
  32. 32.
    Mastorakos E, Taylor A, Whitelaw J (1995) Extinction of turbulent counterflow flames with reactants diluted by hot products. Combust Flame 102(1–2):101–114CrossRefGoogle Scholar
  33. 33.
    De Joannon M, Matarazzo A, Sabia P, Cavaliere PA (2007) Mild combustion in homogeneous charge diffusion ignition (HCDI) regime. Proc Combust Inst 31(2):3409–3416CrossRefGoogle Scholar
  34. 34.
    Galletti C, Parente A, Tognotti L (2007) Numerical and experimental investigation of a mild combustion burner. Combust Flame 151:649–664CrossRefGoogle Scholar
  35. 35.
    Coelho PJ, Peters N (2001) Numerical simulation of a mild combustion burner. Combust Flame 124:503–518CrossRefGoogle Scholar
  36. 36.
    Wiinning JA, Wiinning JG (1997) Flameless oxidation to reduce thermal no-formation. Prog Energy Combust Sci 23:81–94CrossRefGoogle Scholar
  37. 37.
    Luhmann H, Carrasco Maldonado F, Spörl R, Scheffknecht G (2017) Flameless oxidation of liquid fuel oil in a reverse-flow cooled combustion chamber. Energy Procedia 120:222–229CrossRefGoogle Scholar
  38. 38.
    Goh KHH, Geipel P, Hampp F, Lindstedt RP (2013) Regime transition from premixed to flameless oxidation in turbulent JP-10 flames. Proc Combust Inst 34:3311–3318CrossRefGoogle Scholar
  39. 39.
    Veríssimo AS, Rocha AMA, Costa M (2013) Experimental study on the influence of the thermal input on the reaction zone under flameless oxidation conditions. Fuel Process Technol 106:423–428CrossRefGoogle Scholar
  40. 40.
    Weidmann M, Verbaere V, Boutin G, Honoré D, Grathwohl S, Goddard G, Gobin C, Dieter H, Kneer R, Scheffknecht G (2015) Detailed investigation of flameless oxidation of pulverized coal at pilot-scale (230 kWth). Appl Therm Eng 74:96–101CrossRefGoogle Scholar
  41. 41.
    Milani A, Wünning J (2002) What is flameless combustion? In: IFRF online combustion handbook, pp 1–171, ISSN 1607-9116Google Scholar
  42. 42.
    Oldenhof E, Tummers MJ, Van Veen EH, Roekaerts DJEM (2009) Ignition kernel statistics of Delft jet-in-hot coflow flames. Eur Combust MeetGoogle Scholar
  43. 43.
    Oldenhof E, Tummers MJ, Van Veen EH, Roekaerts DJEM (2010) Ignition kernel formation and lift-off behaviour of jet-in-hot-coflow flames. Combust Flame 157:1167–1178CrossRefGoogle Scholar
  44. 44.
    Dally BB, Karpetis AN, Barlow RS (2002) Structure of turbulent non-premixed jet flames in a diluted hot coflow. Proc Combust Inst 29:1147–1154CrossRefGoogle Scholar
  45. 45.
    Szegö GG, Dally BB, Nathan GJ (2008) Scaling of NOx emissions from a laboratory-scale mild combustion furnace. Combust Flame 154:281–295CrossRefGoogle Scholar
  46. 46.
    Veríssimo AS, Rocha AMA, Costa M (2011) Operational, combustion, and emission characteristics of a small-scale combustor. Energy Fuels 25:2469–2480CrossRefGoogle Scholar
  47. 47.
    Lupant D, Pesenti B, Lybaert P (2010) Influence of probe sampling on reacting species measurement in diluted combustion. Exp Therm Fluid Sci 34:516–522CrossRefGoogle Scholar
  48. 48.
    Mancini M, Weber R, Bollettini U (2002) Predicting NOx emissions of a burner operated in flameless oxidation mode. Proc Combust Inst 29:1155–1163CrossRefGoogle Scholar
  49. 49.
    Cho ES, Shin D, Lu J, de Jong W, Roekaerts DJEM (2013) Configuration effects of natural gas fired multi-pair regenerative burners in a flameless oxidation furnace on efficiency and emissions. Appl Energy 107:25–32CrossRefGoogle Scholar
  50. 50.
    Li P, Mi J, Dally BB, Craig RA, Wang F (2011) Premixed moderate or intense low-oxygen dilution (MILD) combustion from a single jet burner in a laboratory-scale furnace. Energy Fuels 25:2782–2793CrossRefGoogle Scholar
  51. 51.
    Graça M, Duarte A, Coelho PJ, Costa M (2013) Numerical simulation of a reversed flow small-scale combustor. Fuel Process Technol 107:126–137CrossRefGoogle Scholar
  52. 52.
    Huang M, Zhang Z, Shao W, Xiong Y, Liu Y, Lei F, Xiao Y (2014) Coal-derived syngas MILD combustion in parallel jet forward flow combustor. Appl Therm Eng 71:161–168CrossRefGoogle Scholar
  53. 53.
    Huang M, Xiao Y, Zhang Z, Shao W, Xiong Y, Liu Y, Liu Z, Lei F (2015) Effect of air/fuel nozzle arrangement on the MILD combustion of syngas. Appl Therm Eng 87:200–208CrossRefGoogle Scholar
  54. 54.
    Khidr KI, Eldrainy YA, EL-Kassaby MM (2017) Towards lower gas turbine emissions: flameless distributed combustion. Renew Sustain Energy Rev 67:1237–1266CrossRefGoogle Scholar
  55. 55.
    Cheong KP, Li P, Wang F, Mi J (2017) Emissions of NO and CO from counterflow combustion of CH4 under MILD and oxyfuel conditions. Energy 124:652–664CrossRefGoogle Scholar
  56. 56.
    Ye J, Medwell PR, Varea E, Kruse S, Dally BB, Pitsch HG (2015) An experimental study on MILD combustion of prevaporised liquid fuels. Appl Energy 151:93–101CrossRefGoogle Scholar
  57. 57.
    Sorrentino G, Goktolga U, De Jannon M, Van Oijen J, Cavaliere A, De Goey P (2017) An experimental and numerical study of MILD combustion in a cyclonic burner. Energy Procedia 120:649–656CrossRefGoogle Scholar
  58. 58.
    Doan NA, Swaminathan N, Minamoto Y (2018) DNS of MILD combustion with mixture fraction variations. Combust Flame 189:173–189CrossRefGoogle Scholar
  59. 59.
    Ye J, Medwell PR, Dally BB, Evans MJ (2016) The transition of ethanol flames from conventional to MILD combustion. Combust Flame 171:173–184CrossRefGoogle Scholar
  60. 60.
    Sabia P, De Joannon M, Fierro S, Tregrossi A, Cavaliere A (2007) Hydrogen-enriched methane mild combustion in a well stirred reactor. Exp Thermal Fluid Sci 31:469–475CrossRefGoogle Scholar
  61. 61.
    De Joannona M, Cavaliereb A, Faravellic T, Ranzic E, Sabiab P, Tregrossi A (2005) Analysis of process parameters for steady operations in methane mild combustion technology. Proc Combust Inst 30:2605–2612CrossRefGoogle Scholar
  62. 62.
    Arghode VK, Gupta AK (2010) Effect of flow field for colorless distributed combustion (CDC) for gas turbine combustion. J Appl Energy 78:1631–1640CrossRefGoogle Scholar
  63. 63.
    Khalil AEE, Gupta AK (2011) Swirling distributed combustion for clean energy conversion in gas turbine applications. J Appl Energy 88:3685–3693CrossRefGoogle Scholar
  64. 64.
    Arghode VK, Gupta AK, Bryden KM (2012) High intensity colorless distributed combustion for ultra low emissions and enhanced performance. J Appl Energy 92:822–830CrossRefGoogle Scholar
  65. 65.
    Khalil AEE, Gupta AK (2011) Distributed swirl combustion for gas turbine application. J Appl Energy 88:4898–4907CrossRefGoogle Scholar
  66. 66.
    Arghode VK, Gupta AK (2012) Fuel dilution and liquid fuel operational effects on ultra-high thermal intensity distributed combustor. J Appl Energy 95:132–138CrossRefGoogle Scholar
  67. 67.
    Tsuji H, Gupta AK, Hasegawa T, Katsuki M, Kishimoto K, Morita M (2003) High temperature air combustion: from energy conservation to pollution reduction. CRC PressGoogle Scholar
  68. 68.
    Al-Halbouni A, Giese A, Tali E, Leicher J, Albus R, Görner K (2017) Combustor concept for industrial gas turbines with single digit NOx and CO emission values. Energy Procedia 120:134–139CrossRefGoogle Scholar
  69. 69.
    Fenimore CP (1971) In: 13th symposium (international) on combustion. The Combustion Institute, p 373Google Scholar
  70. 70.
    Richards GA, Straub DL, Robey EH (2003) Passive control of combustion dynamics in stationary gas turbines. J Propul Power 195:795–810CrossRefGoogle Scholar
  71. 71.
    Mongia HC, Held TJ, Hsiao GC, Pandalai RP (2003) Challenges and progress in controlling dynamics in gas turbine combustors. J Propul Power 195:822–829CrossRefGoogle Scholar
  72. 72.
    Muruganandam TM, Nair S, Scarborough D, Neumeier Y, Jagoda J, Lieuwen T, Seitzman J, Zinn B (2005) Active control of lean blowout for turbine engine combustors. J Propul Power 215:807–814CrossRefGoogle Scholar
  73. 73.
    Cheng RK (1995) Velocity and scalar characteristics of premixed turbulent flames stabilized by weak swirl. Combust Flame 101:1–14CrossRefGoogle Scholar
  74. 74.
    Shepherd IG, Cheng RK (2001) Measurements of the turbulent burning velocity and the structure of premixed flames on a low-swirl burner. Combust Flame 1273:2066–2075CrossRefGoogle Scholar
  75. 75.
    Cheng RK, Shepherd IG, Bedat B, Talbot L (2002) Premixed turbulent flame structures in moderate and intense isotropic turbulence. Combust Sci Technol 1741:29–59CrossRefGoogle Scholar
  76. 76.
    Cheng RK, Yegian DT, Miyasato MM, Samuelsen GS, Pellizzari R, Loftus P, Benson C (2000) Scaling and development of low-swirl burners for low-emission furnaces and boilers. Proc Combust Inst 28:1305–1313CrossRefGoogle Scholar
  77. 77.
    Littlejohn D, Majeski MJ, Tonse S, Castaldini C, Cheng RK (2002) Laboratory investigation of an ultralow NOx premixed combustion concept for industrial boilers. Proc Combust Inst 29:1115–1121CrossRefGoogle Scholar
  78. 78.
    Johnson MR, Littlejohn D, Nazeer WA, Smith KO, Cheng RK (2005) A comparison of the flowfields and emissions of high-swirl injectors and low-swirl injectors for lean premixed gas turbines. Proc Combust Inst 30:2867–2874CrossRefGoogle Scholar
  79. 79.
    Nazeer WA, Smith KO, Sheppard P, Cheng RK, Littlejohn D (2006) Full Scale testing of a low swirl fuel injector concept for ultra-low NOx gas turbine combustion systems. In: ASME turbo expo, Paper No. GT2006-90150Google Scholar
  80. 80.
    Littlejohn D, Cheng RK (2006) Fuel effects on a low-swirl injector for lean premixed gas turbines. Proc Combust Inst 31:3155–3162CrossRefGoogle Scholar
  81. 81.
    Cheng RK, Littlejohn D, Nazeer WA, Smith K (2008) Laboratory studies of the flow field characteristics of low-swirl injectors for adaptation to fuel-flexible turbines. J Eng Gas Turb Power 130:021501-1CrossRefGoogle Scholar
  82. 82.
    Beér JM, Chigier NA (1972) Combustion aerodynamics. New YorkGoogle Scholar
  83. 83.
    Peters N (2000) Turbulent combustion, 1st edn. Cambridge University PressGoogle Scholar
  84. 84.
    Glassman I, Yetter RA (2008) Combustion, 4th edn. Elsevier IncGoogle Scholar
  85. 85.
    Kuznetsov RV, Sabel’nikov VA, Libby PA (1990) Turbulence and combustion, 1st edn. Hemisphere Publishing CorporationGoogle Scholar
  86. 86.
    Chowdhury BR, Cetegen BM (2017) Experimental study of the effects of free stream turbulence on characteristics and flame structure of bluff-body stabilized conical lean premixed flames. Combust Flame 178:311–328CrossRefGoogle Scholar
  87. 87.
    Koutmos P, McGuirk JJ (1989) Isothermal flow in a gas turbine combustor—a benchmark experimental study. Exp Fluids 7:344–354CrossRefGoogle Scholar
  88. 88.
    Clavin P (1985) Dynamic behavior of premixed flame fronts in laminar and turbulent flows. Prog Energy Combust Sci 11:1–59CrossRefGoogle Scholar
  89. 89.
    Driscoll JF (2008) Turbulent premixed combustion: flamelet structure and its effect on turbulent burning velocities. Prog Energy Combust Sci 34:91–134CrossRefGoogle Scholar
  90. 90.
    Lipatnikov AN, Chomiak J (2002) Turbulent flame speed and thickness: phenomenology, evaluation, and application in multi-dimensional simulations. Prog Energy Combust Sci 28:1–74CrossRefGoogle Scholar
  91. 91.
    Kheirkhah S, Gülder ÖL (2013) Turbulent premixed combustion in V-shaped flames: characteristics of flame front. Phys Fluids 25(055107):1–23Google Scholar
  92. 92.
    Kheirkhah S, Gülder ÖL (2014) Topology and brush thickness of turbulent premixed V-shaped flames. Flow Turbul Combust 93:439–459CrossRefGoogle Scholar
  93. 93.
    Namazian M, Shepherd IG, Talbot L (1986) Characterization of the density fluctuations in turbulent V-shaped premixed flames. Flame 64:229–308CrossRefGoogle Scholar
  94. 94.
    Shepherd IG (1996) Flame surface density and burning rate in premixed turbulent flames. In: Symposium (international) on combustion, vol 26. Elsevier, pp 373–379Google Scholar
  95. 95.
    Sattler SS, Knaus DA, Gouldin FC (2002) Determination of three-dimensional flamelet orientation distributions in turbulent V-flames from two-dimensional image data. Proc Combust Inst 29:1785–1792CrossRefGoogle Scholar
  96. 96.
    Robin V, Mura A, Champion M, Degardin O, Renou B, Boukhalfa M (2008) Experimental and numerical analysis of stratified turbulent V-shaped flames. Combust Flame 153:288–315CrossRefGoogle Scholar
  97. 97.
    Paul PH, Najm HN (1998) Planar laser-induced fluorescence imaging of flame heat release rate. In: Symposium (international) on combustion, vol 27. pp 43–50CrossRefGoogle Scholar
  98. 98.
    Böckle S, Kazenwadel J, Shin DI, Schulz C, Wolfrum J (2000) Simultaneous single-shot laser-based imaging of formaldehyde, OH, and temperature in turbulent flames. Proc Combust Inst 28:279–286CrossRefGoogle Scholar
  99. 99.
    Kariuki J, Dowlut A, Balachandran R, Mastorakos E (2016) Heat release imaging in turbulent premixed ethylene–air flames near blow-off. Flow Turbul Combust 96:1039–1051CrossRefGoogle Scholar
  100. 100.
    Kariuki J, Dowlut A, Yuan R, Balachandran R, Mastorakos E (2015) Heat release imaging in turbulent premixed methane–air flames close to blow-off. Proc Combust Inst 35:1443–1450CrossRefGoogle Scholar
  101. 101.
    Skiba AW, Wabel TM, Temme J, Driscoll JF (2016) Experimental assessment of premixed flames subjected to extreme turbulence. In: 54th AIAA aerospace sciences meeting, p 1454Google Scholar
  102. 102.
    Zhou B, Brackman C, Li Z, Alden M, Bai X (2015) Simultaneous multi-species and temperature visualization of premixed flames in the distributed reaction zone regime. Proc Combust Inst 35:1409–1416CrossRefGoogle Scholar
  103. 103.
    Zhou B, Brackmann C, Li Q, Wang Z, Petersson P, Li Z, Aldén M, Bai XS (2015) Distributed reactions in highly turbulent premixed methane/air flames: part I. Flame structure characterization. Combust Flame 162:2937–2953CrossRefGoogle Scholar
  104. 104.
    Cavaliere A, De Joannon M (2004) Mild combustion. Prog Energy Combust Sci 30:329–366CrossRefGoogle Scholar
  105. 105.
    Masri AR, Barlow RS, Fiechtner GJ, Fletcher DF (1998) Instantaneous and mean compositional structure of bluff-body stabilized nonpremixed flames. Combust Flame 114:119–148CrossRefGoogle Scholar
  106. 106.
    Masri AR, Kalt PAM, Barlow RS (2004) The compositional structure of swirl-stabilised turbulent nonpremixed flames. Combust Flame 137:1–37CrossRefGoogle Scholar
  107. 107.
    Olivani A, Solero G, Cozzi F, Coghe A (2007) Near field flow structure of isothermal swirling flows and reacting non-premixed swirling flames. Exp Thermal Fluid Sci 31:427–436CrossRefGoogle Scholar
  108. 108.
    Vanoverberghe K (2004) Flow, turbulence and combustion of premixed swirling jet flames. PhD thesis, University of LeuvenGoogle Scholar
  109. 109.
    Meier W, Duan XR, Weigand P (2005) Reaction zone structures and mixing characteristics of partially premixed swirling CH4/air flames in a gas turbine model combustor. Proc Combust Inst 30:835–842CrossRefGoogle Scholar
  110. 110.
    El-Asrag H, Menon S (2007) Large eddy simulation of bluff-body stabilized swirling non-premixed flames. Proc Combust Inst 31:1747–1754CrossRefGoogle Scholar
  111. 111.
    Sengissen AX, Van Kampen JF, Huls RA, Stoffels GGM, Kok JBW, Poinsot TJ (2007) LES and experimental studies of cold and reacting flow in a swirled partially premixed burner with and without fuel modulation. Combust Flame 150:40–53CrossRefGoogle Scholar
  112. 112.
    Sadiki A, Maltsev A, Wegner B, Flemming F, Kempf A, Janicka J (2006) Unsteady methods (URANS and LES) for simulation of combustion systems. Int J Therm Sci 45:760–773CrossRefGoogle Scholar
  113. 113.
    Derek Dunn-Rankin D (ed) (2008) Lean combustion technology and control. Academic Press, ElsevierGoogle Scholar
  114. 114.
    Gore JP, Zhan NJ (1996) NOx emission and major species concentrations in partially premixed laminar methane/air co-flow jet flames. Combust Flame 105:414–427CrossRefGoogle Scholar
  115. 115.
    Yadav NP, Kushari A (2009) Visualization of recirculation in a low aspect ratio dump combustor. J Flow Vis Image Process 16:127–136CrossRefGoogle Scholar
  116. 116.
    Hong S, Shanbhogue SJ, Ghoniem AF (2015) Impact of fuel composition on the recirculation zone structure and its role in lean premixed flame anchoring. Proc Combust Inst 35:1493–1500CrossRefGoogle Scholar
  117. 117.
    Li G, Gutmark EJ (2005) Effect of exhaust nozzle geometry on combustor flow field and combustion characteristics. Proc Combust Inst 30:2893–2901CrossRefGoogle Scholar
  118. 118.
    Altay HM, Speth RL, Hudgins DE, Ghoniem AF (2009) Flame–vortex interaction driven combustion dynamics in a backward-facing step combustor. Combust Flame 156:1111–1125CrossRefGoogle Scholar
  119. 119.
    Speth RL, Ghoniem AF (2009) Using a strained flame model to collapse dynamic mode data in a swirl-stabilized syngas combustor. Proc Combust Inst 32:2993–3000CrossRefGoogle Scholar
  120. 120.
    Speth RL, Hong S, Shanbhogue SJ, Ghoniem AF (2011) Mode selection in flame-vortex driven combustion instabilities. In: 49th AIAA aerospace sciences meeting, p 236Google Scholar
  121. 121.
    Speth RL (2010) Fundamental studies in hydrogen-rich combustion: instability mechanisms and dynamic mode selection. PhD thesis, Massachusetts Institute of Technology, USAGoogle Scholar
  122. 122.
    Hsu KY, Goss LP, Roquemore WM (1998) Characteristics of a trapped-vortex combustor. J Propul Power 14:57–65CrossRefGoogle Scholar
  123. 123.
    Patrignani L, Losurdo M, Bruno C (2010) Numerical studies of the integration of a trapped vortex combustor into traditional combustion chambers. Int Flame Res Found Combust J 4:201003Google Scholar
  124. 124.
    Kim W, Im ZS, Do ZH, Mungal MG (2010) Flame liftoff height dependence on geometrically modified bluffbodies in a vitiated flow. Exp Fluids 49:27–41CrossRefGoogle Scholar
  125. 125.
    Nogenmyr KJ, Kiefer J, Li ZS, Bai XS, Alden M (2010) Numerical computations and optical diagnostics of unsteady partially premixed methane/air flames. Combust Flame 157:915–924CrossRefGoogle Scholar
  126. 126.
    Schneider E, Maltsev A, Sadiki A, Janicka J (2008) Study on the potential of BML-approach and G-equation concept-based models for predicting swirling partially premixed combustion systems: URANS computations. Combust Flame 152:548–572CrossRefGoogle Scholar
  127. 127.
    Asgari B, Amani E (2017) A multi-objective CFD optimization of liquid fuel spray injection in dry-low-emission gas-turbine combustors. Appl Energy 203:696–710CrossRefGoogle Scholar
  128. 128.
    Dunn-Rankin D (ed) (2011) Lean combustion: technology and control. Academic PressGoogle Scholar
  129. 129.
    Boyce MP (2012) Gas turbine engineering handbook, 4th edn. Butterworth-Heinemann, Oxford, UKCrossRefGoogle Scholar
  130. 130.
    Tang Q, Liu H, Li M, Yao M (2017) Optical study of spray-wall impingement impact on early-injection gasoline partially premixed combustion at low engine load. Appl Energy 185:708–719CrossRefGoogle Scholar
  131. 131.
    Asai T, Dodo S, Karishuku M, Yagi N, Akiyama Y, Hayashi A (2015) Performance of multiple-injection dry low-NOx combustors on hydrogen-rich syngas fuel in an IGCC pilot plant. J Eng Gas Turbines Power 137:091504CrossRefGoogle Scholar
  132. 132.
    Ebi D, Clemens NT (2016) Experimental investigation of upstream flame propagation during boundary layer flashback of swirl flames. Combust Flame 168:39–52CrossRefGoogle Scholar
  133. 133.
    Nord LO, Andersen HG (2004) A study of parameters affecting the combustion stability and emissions behavior of ALSTOM heavy-duty gas turbines. ASME Turbo Expo 1:93–100Google Scholar
  134. 134.
    Vandervort CL (2000) Dry, 9 ppm NOx/CO combustion system for “F” class industrial gas turbines. ASME Turbo Expo 2:1–7Google Scholar
  135. 135.
    ElKady AM, Evulet A, Brand A, Ursin TP, Lynghjem A (2008) Exhaust gas recirculation in DLN F-class gas turbines for post-combustion CO2 capture. ASME Turbo Expo 3:847–854Google Scholar
  136. 136.
    Ayed AH, Kusterer K, Funke HW, Keinz J, Kazari M, Kitajima J, Horikawa A, Okada K, Bohn D (2014) Numerical study on increased energy density for the DLN micromix hydrogen combustion principle. ASME Turbo Expo 4A:1–12Google Scholar
  137. 137.
    Lacy B, Ziminsky W, Lipinski J, Varatharajan B, Yilmaz E, Brumberg J (2008) Low emissions combustion system development for the ge energy high hydrogen turbine program. ASME Turbo Expo 3:617–624Google Scholar
  138. 138.
    Pfefferle LD, Pfefferle WC (1987) Catalysis in combustion. Catal Rev Sci Eng 29:219–267CrossRefGoogle Scholar
  139. 139.
    Hayes RE, Kolaczkowski ST (1997) Introduction to catalytic combustion. Gordon and Breach Science Publishers, Reading, UKGoogle Scholar
  140. 140.
    Dalla Betta RA (1997) Catalytic combustion gas turbine systems: the preferred technology for low emissions electric power production and co-generation. Catal Today 35:129–135CrossRefGoogle Scholar
  141. 141.
    Forzatti P, Groppi G (1999) Catalytic combustion for the production of energy. Catal Today 54:165–180CrossRefGoogle Scholar
  142. 142.
    Forzatti P (2003) Status and perspectives of catalytic combustion for gas turbines. Catal Today 83:3–18CrossRefGoogle Scholar
  143. 143.
    Ducruix S, Schuller T, Durox D, Candel S (2003) Combustion dynamics and instabilities: elementary coupling and driving mechanisms. J Propul Power 19:722–734CrossRefGoogle Scholar
  144. 144.
    Altay HM, Kedia KS, Speth RL, Ghoniem AF (2010) Two-dimensional simulations of steady perforated-plate stabilized premixed flames. Combust Theor Model 14:125–154zbMATHCrossRefGoogle Scholar
  145. 145.
    Mallens R, De Goey L (1998) Flash-back of laminar premixed methane/air flames on slitand tube burners. Combust Sci Technol 136:41–54CrossRefGoogle Scholar
  146. 146.
    Lammers F, De Goey L (2003) A numerical study of flash back of laminar premixed flames in ceramic-foam surface burners. Combust Flame 133:47–61CrossRefGoogle Scholar
  147. 147.
    Kedia KS, Ghoniem AF (2012) Mechanisms of stabilization and blowoff of a premixed flame downstream of a heat-conducting perforated plate. Combust Flame 159:1055–1069CrossRefGoogle Scholar
  148. 148.
    Timmermans J, Vanierschot M, Van den Bulck E (2011) Flow instabilities in the near wake of a perforated plate. In: 9th national congress on theoretical and applied mechanics, BrusselsGoogle Scholar
  149. 149.
    Rodrigues JM, Fernandes EC (2014) Stability analysis and flow characterization of multi-perforated plate premixed burners. In: The 17th international symposium on applications of laser techniques to fluid mechanics, Lisbon, PortugalGoogle Scholar
  150. 150.
    Veetil JE, Rajith C, Velamati RK (2016) Numerical simulations of steady perforated-plate stabilized syngas air pre-mixed flames. Int J Hydrogen Energy 41:13747–13757CrossRefGoogle Scholar
  151. 151.
    Jithin E, Kishore VR, Varghese RJ (2014) Three-dimensional simulations of steady perforated-plate stabilized propane–air premixed flames. Energy Fuels 28:5415–5425CrossRefGoogle Scholar
  152. 152.
    Hindasageri V, Kuntikana P, Vedula RP, Prabhu SV (2015) An experimental and numerical investigation of heat transfer distribution of perforated plate burner flames impinging on a flat plate. Int J Therm Sci 94:156–169CrossRefGoogle Scholar
  153. 153.
    Kuntikana P, Prabhu S (2017) Thermal investigations on methane-air premixed flame jets of multi-port burners. Energy 123:218–228CrossRefGoogle Scholar
  154. 154.
    Lee PH, Hwang SS (2013) Formation of lean premixed surface flame using porous baffle plate and flame holder. J Therm Sci Technol 8:178–189CrossRefGoogle Scholar
  155. 155.
    Moghaddam MHS, Moghaddam MS, Khorramdel M (2017) Numerical study of geometric parameters effecting temperature and thermal efficiency in a premix multi-hole flat flame burner. Energy 125:654–662CrossRefGoogle Scholar
  156. 156.
    DÃķbbeling K, Hellat J, Koch H (2007) 25 years of BBC/ABB/Alstom lean premix combustion technologies. J Eng Gas Turbines Power 129:2–12CrossRefGoogle Scholar
  157. 157.
    Sattelmayer T, Felchlin MP, Haumann J, Hellat J, Styner D (1992) Second-generation low-emission combustors for ABB gas turbines: burner development and tests at atmospheric pressure. ASME J Eng Gas Turbines Power 114:118–125CrossRefGoogle Scholar
  158. 158.
    Sattelmayer T, Polifke W, Winkler D, Döbbeling K (1996) NOx-abatement potential of lean-premixed GT-combustors. ASME J Eng Gas Turbines Power 120:48–59CrossRefGoogle Scholar
  159. 159.
    Güthe F, Hellat J, Flohr P (2008) The reheat concept: the proven pathway to ultralow emissions and high efficiency and flexibility. J Eng Gas Turbines Power 131:021503CrossRefGoogle Scholar
  160. 160.
    Peter F, Martin Z, Rudolf L, Stefano B, Christian M (2007) Development and design of Alstom’s staged fuel gas injection EV burner for NOx reduction. In: ASME turbo expo, GT2007–27730Google Scholar
  161. 161.
    Mallampalli HP, Fletcher TH, Chen JY (1998) Evaluation of CH4/NOx reduced mechanisms used for modeling lean premixed turbulent combustion of natural gas. J Eng Gas Turbines Power 120:703–712CrossRefGoogle Scholar
  162. 162.
    Huang Y, Yang V (2009) Dynamics and stability of lean-premixed swirl-stabilized combustion. Prog Energy Combust Sci 35:293–364CrossRefGoogle Scholar
  163. 163.
    Sohn CH, Cho HC (2005) A CFD study on thermo-acoustic instability of methane/air flames in gas turbine combustor. J Mech Sci Technol 19:1811–1812CrossRefGoogle Scholar
  164. 164.
    Lefebvre AH (1998) Gas turbine combustion, 2nd edn. Taylor & Francis, pp 350–352Google Scholar
  165. 165.
    Cho CH, Baek GM, Sohn CH, Cho JH, Kim HS (2013) A numerical approach to reduction of NOx emission from swirl premix burner in a gas turbine combustor. Appl Therm Eng 59:454–463CrossRefGoogle Scholar
  166. 166.
    Biagioli F, Güthe F (2007) Effect of pressure and fuel–air unmixedness on NOx emissions from industrial gas turbine burners. Combust Flame 151:274–288CrossRefGoogle Scholar
  167. 167.
    Biagioli F (2006) Stabilization mechanism of turbulent premixed flames in strongly swirled flows. Combust Theor Model 10:389–412MathSciNetzbMATHCrossRefGoogle Scholar
  168. 168.
    Biagioli F, Güthe F, Schuermans B (2008) Combustion dynamics linked to flame behaviour in a partially premixed swirled industrial burner. Exp Thermal Fluid Sci 32:1344–1353CrossRefGoogle Scholar
  169. 169.
    York WD, Ziminsky WS, Yilmaz E (2013) Development and testing of a low NOx hydrogen combustion system for heavy-duty gas turbines. J Eng Gas Turbines Power 135:022001CrossRefGoogle Scholar
  170. 170.
    Funke HHW, Börner S, Keinz J, Kusterer K, Kroniger D, Kitajima J, Kazari M, Horikawa A (2012) Numerical and experimental characterization of low NOx micromix combustion principle for industrial hydrogen gas turbine applications. ASME Turbo Expo 2:1069–1079Google Scholar
  171. 171.
    Dodo S, Asai T, Koizumi H, Takahashi H, Yoshida S, Inoue H (2011) Combustion characteristics of a multiple-injection combustor for dry low-NOx combustion of hydrogen-rich fuels under medium pressure. Proc ASME Turbo Expo 2:467–476Google Scholar
  172. 172.
    De Robbio R (2017) Innovative combustion analysis of a micro-gas turbine burner supplied with hydrogen-natural gas mixtures. Energy Procedia 126:858–866CrossRefGoogle Scholar
  173. 173.
    Cheng R (2008) Adaption of the low-swirl burner technology for syngas and H2 gas turbines. In: Proceedings of the future of gas turbine technology: fourth international conference, Paper No. IGTC08_P45, Brussels, BelgiumGoogle Scholar
  174. 174.
    Lieuwen T, McDonnell V, Santavicca D, Sattelmayer T (2008) Burner development and operability issues associated with steady flowing syngas fired combustors. Combust Sci Technol 180:1169–1192CrossRefGoogle Scholar
  175. 175.
    Brunetti I, Riccio G, Rossi N, Cappelletti A, Bonelli L, Marini A, Paganini E, Martelli F (2011) Experimental and numerical characterization of lean hydrogen combustion in a premix burner prototype. In: Proceedings of ASME turbo expo, Paper No. GT2011-45623, Vancouver, BC, CanadaGoogle Scholar
  176. 176.
    Weiland N, Sidwell T, Strakey P (2011) Testing of a hydrogen dilute diffusion array injector at gas turbine conditions. In: Proceedings of ASME turbo expo, Paper No. GT2011-46596, Vancouver, BC, CanadaGoogle Scholar
  177. 177.
    Marek C, Smith T, Kundu K (2005) Low emission hydrogen combustors for gas turbines using lean direct injection. In: Proceedings of the 41st joint propulsion conference, Tucson, AZ, Paper No. AIAA-2005-3776Google Scholar
  178. 178.
    Funke H, Boerner S, Krebs W, Wolf E (2011) Experimental characterization of low NOx micromix prototype combustors for industrial gas turbine applications. In: Proceedings of ASME turbo expo, Paper No. GT2011-45305, Vancouver BC, CanadaGoogle Scholar
  179. 179.
    Asai T, Dodo S, Koizumi H, Takahashi H, Yoshida S, Inoue H (2011) Effects of multiple-injection-burner configurations on combustion characteristics for dry low-NOx combustion of hydrogen-rich fuels. In: Proceedings of ASME turbo expo, Paper No. GT2011-45295, Vancouver BC, CanadaGoogle Scholar
  180. 180.
    Lee H, Hernandez S, McDonnell V, Steinthorsson E, Mansour A, Hollon B (2009) Development of flashback resistant low-emission micro-mixing fuel injector for 100% hydrogen and syngas fuels. In: Proceedings of ASME turbo expo, Paper No. GT2009-59502, Orlando, FLGoogle Scholar
  181. 181.
    Funke HHW, Recker E, Börner S, Bosschaerts W (2009) LES of jets in cross-flow and application to the micromix hydrogen combustion. In: Proceedings of the 19th international symposium on air breathing engine, ISABE, 1309, Montreal, CanadaGoogle Scholar
  182. 182.
    Ayed AH, Kusterer K, Funke HHW, Keinz J, Bohn D (2017) CFD based exploration of the dry-low-NOx hydrogen micromix combustion technology at increased energy densities. Propul Power Res 6:15–24CrossRefGoogle Scholar
  183. 183.
    Ayed AH, Kusterer K, Funke HHW, Keinz J, Striegan C, Bohn D (2015) Experimental and numerical investigations of the dry-low-NOx hydrogen micromix combustion chamber of an industrial gas turbine. Propul Power Res 4:123–131CrossRefGoogle Scholar
  184. 184.
    Ayed AH, Kusterer K, Funke HHW, Striegan C, Bohn D (2015) Improvement study for the dry-low-NOx hydrogen micromix combustion technology. Propul Power Res 4:132–140CrossRefGoogle Scholar
  185. 185.
    Funke HHW, Keinz J, Kusterer K, Ayed AH, Kazari M, Kitajima J, Horikawa A, Okada K (2015) Experimental and numerical study on optimizing the DLN micromix hydrogen combustion principle for industrial gas turbine applications. In: ASME turbo expo, GT2015-42043, Montréal, CanadaGoogle Scholar
  186. 186.
    Taamallah S, Shanbhogue SJ, Ghoniem AF (2016) Turbulent flame stabilization modes in premixed swirl combustion: physical mechanism and Karlovitz number-based criterion. Combust Flame 166:19–33CrossRefGoogle Scholar
  187. 187.
    Lipatnikov AN (2017) Stratified turbulent flames: recent advances in understanding the influence of mixture inhomogeneities on premixed combustion and modeling challenges. Prog Energy Combust Sci 62:87–132CrossRefGoogle Scholar
  188. 188.
    Ditaranto M, Anantharaman R, Weydahl T (2013) Performance and NOx emissions of refinery fired heaters retrofitted to hydrogen combustion. Energy Procedia 37:7214–7220CrossRefGoogle Scholar
  189. 189.
    Bouvet N, Halter F, Chauveau C, Yoon Y (2013) On the effective Lewis number formulations for lean hydrogen/hydrocarbon/air mixtures. Int J Hydrogen Energy 38:5949–5960CrossRefGoogle Scholar
  190. 190.
    Lieuwen T, McDonell V, Petersen E, Santavicca D (2008) Fuel flexibility influences on premixed combustor blowout, flashback, autoignition, and stability. J Eng Gas Turbines Power 130:11506CrossRefGoogle Scholar
  191. 191.
    Taamallah S, Vogiatzaki K, Alzahrani FM, Mokheimer EMA, Habib MA, Ghoniem AF (2015) Fuel flexibility, stability and emissions in premixed hydrogen-rich gas turbine combustion: technology, fundamentals, and numerical simulations. Appl Energy 154:1020–1047CrossRefGoogle Scholar
  192. 192.
    Glassman I (2008) Combustion, 4th edn.
  193. 193.
    Sankaran R, Im HG (2006) Effects of hydrogen addition on the Markstein length and flammability limit of stretched methane/air premixed flames. Combust Sci Technol 178:1585–1611CrossRefGoogle Scholar
  194. 194.
    Shanbhogue SJ, Sanusi YS, Taamallah S, Habibb MA, Mokheimer EMA, Ghoniem AF (2016) Flame macrostructures, combustion instability and extinction strain scaling in swirl-stabilized premixed CH4/H2 combustion. Combust Flame 163:494–507CrossRefGoogle Scholar
  195. 195.
    Hawkes ER, Chen JH (2004) Direct numerical simulation of hydrogen-enriched lean premixed methane–air flames. Combust Flame 138:242–258CrossRefGoogle Scholar
  196. 196.
    Choundhuri AR, Gollahalli SR (2000) Combustion characteristics of hydrogen–hydrocarbon hybrid fuels. Hydrogen Energy 25:451–462CrossRefGoogle Scholar
  197. 197.
    Choundhuri AR, Gollahalli SR (2003) Characteristics of hydrogen–hydrocarbon composite fuel turbulent jet flame. Hydrogen Energy 28:445–454CrossRefGoogle Scholar
  198. 198.
    Kim S, Arghode K, Gupta K (2009) Flame characteristics of hydrogen-enriched methane–air premixed swirling flames. Int J Hydrogen Energy 34:1063–1073CrossRefGoogle Scholar
  199. 199.
    Kim S, Arghode K, Gupta K (2009) Combustion characteristics of a lean premixed LPG–air combustor. Int J Hydrogen Energy 34:1045–1053CrossRefGoogle Scholar
  200. 200.
    Aladawy S, Lee J, Abdelnabi B (2017) Effect of turbulence on NOx emission in a lean perfectly-premixed combustor. Fuel 208:160–167CrossRefGoogle Scholar
  201. 201.
    Griebel P, Boschek E, Jansohn P (2007) Lean blowout limits and NOx emissions of turbulent, lean premixed, hydrogen-enriched methane/air flames at high pressure. J Eng Gas Turbines Power 129:404–410CrossRefGoogle Scholar
  202. 202.
    Schefer RW, Wicksall DM, Agrawal AK (2002) Combustion of hydrogen-enriched methane in a lean premixed swirl-stabilized burner. Proc Combust Inst 29:843–851CrossRefGoogle Scholar
  203. 203.
    Rashwan SS, Ibrahim AH, Abou-Arab TW, Nemitallah MA, Habib MA (2016) Experimental investigation of partially premixed methane–air and methane–oxygen flames stabilized over a perforated-plate burner. Appl Energy 169:126–137CrossRefGoogle Scholar
  204. 204.
    Rashwan SS, Ibrahim AH, Abou-Arab TW, Nemitallah MA, Habib MA (2017) Experimental study of atmospheric partially premixed oxy-combustion flames anchored over a perforated plate burner. Energy 122:159–167CrossRefGoogle Scholar
  205. 205.
    Nemitallah MA, Habib MA (2013) Experimental and numerical investigations of an atmospheric diffusion oxy-combustion flame in a gas turbine model combustor. Appl Energy 111:401–415CrossRefGoogle Scholar
  206. 206.
    Nemitallah MA, Habib MA, Badr HM (2017) Design of a multi-can carbon-free gas turbine combustor utilizing multiple shell-and-tube OTRs for ZEPP applications. J Nat Gas Sci Eng 46:172–187CrossRefGoogle Scholar
  207. 207.
    Guo J, Hu F, Jiang X, Huang X, Li P, Liu Z, Zheng C (2017) Experimental and numerical investigations on heat transfer characteristics of a 35 MW oxy-fuel combustion boiler. Energy Procedia 114:481–489CrossRefGoogle Scholar
  208. 208.
    Li B, Shi B, Zhao X, Ma K, Xie D, Zhao D, Li J (2018) Oxy-fuel combustion of methane in a swirl tubular flame burner under various oxygen contents: operation limits and combustion instability. Exp Thermal Fluid Sci 90:115–124CrossRefGoogle Scholar
  209. 209.
    Habib MA, Salaudeen SA, Nemitallah MA, Ben-Mansour R, Mokheimer EMA (2016) Numerical investigation of syngas oxy-combustion inside a LSCF-6428 oxygen transport membrane reactor. Energy 96:654–665CrossRefGoogle Scholar
  210. 210.
    Scheffknecht G, Al-Makhadmeh L, Schnell U, Maier J (2011) Oxy-fuel coal combustion—a review of the current state-of-the-art. Int J Greenh Gas Control 5:16–35CrossRefGoogle Scholar
  211. 211.
    Khalil AEE, Gupta AK (2017) The role of CO2 on oxy-colorless distributed combustion. Appl Energy 188:466–474CrossRefGoogle Scholar
  212. 212.
    Álvarez JFG, De Grado JG (2016) Study of a modern industrial low pressure turbine for electricity production employed in oxy-combustion cycles with CO2 capture purposes. Energy 107:734–747CrossRefGoogle Scholar
  213. 213.
    Wang Z, Liu M, Cheng X, He Y, Hu Y, Ma C (2017) Experimental study on oxy-fuel combustion of heavy oil. Int J Hydrogen Energy 42:20306–20315CrossRefGoogle Scholar
  214. 214.
    Taamallah S, Chakroun NW, Watanabe H, Shanbhogue SJ, Ghoniem AF (2017) On the characteristic flow and flame times for scaling oxy and air flame stabilization modes in premixed swirl combustion. Proc Combust Inst 36:3799–3807CrossRefGoogle Scholar
  215. 215.
    Jimenez S, Gonzalo-Tirado C (2017) Properties and relevance of the volatile flame of an isolated coal particle in conventional and oxy-fuel combustion conditions. Combust Flame 176:94–103CrossRefGoogle Scholar
  216. 216.
    Kedia KS, Ghoniem AF (2015) The blow-off mechanism of a bluff-body stabilized laminar premixed flame. Combust Flame 162:1304–1315CrossRefGoogle Scholar
  217. 217.
    Tuttle SG, Chaudhuri S, Kostka S, Kopp-Vaughan KM, Jensen TR, Cetegen BM, Renfro MW (2012) Time-resolved blowoff transition measurements for two-dimensional bluff body-stabilized flames in vitiated flow. Combust Flame 159:291–305CrossRefGoogle Scholar
  218. 218.
    Plee SL, Mellor AM (1979) Characteristic time correlation for lean blowoff of bluff-body-stabilized flames. Combust Flame 35:61–80CrossRefGoogle Scholar
  219. 219.
    Dawson JR, Gordon RL, Kariuki J, Mastorakos E, Masri AR, Juddoo M (2011) Visualization of blow-off events in bluff-body stabilized turbulent premixed flames. Proc Combust Inst 33:1559–1566CrossRefGoogle Scholar
  220. 220.
    Granados DA, Chejne F, Mejía JM (2015) Oxy-fuel combustion as an alternative for increasing lime production in rotary kilns. Appl Energy 158:107–117CrossRefGoogle Scholar
  221. 221.
    Aneke M, Wang M (2015) Process analysis of pressurized oxy-coal power cycle for carbon capture application integrated with liquid air power generation and binary cycle engines. Appl Energy 154:556–566CrossRefGoogle Scholar
  222. 222.
    Fu Q, Kansha Y, Song C, Liu Y, Ishizuka M, Tsutsumi A (2014) A cryogenic air separation process based on self-heat recuperation for oxy-combustion plants. Appl Energy 162:1114–1121CrossRefGoogle Scholar
  223. 223.
    Rashwan SS, Ibrahim AH, Abou-Arab TW (2015) Experimental investigation of oxy-fuel combustion of CNG flames stabilized over a perforated-plate burner. In: 18th international flame research foundation, Friesing, Munich, pp 1–11Google Scholar
  224. 224.
    Adamczyk WP, Bialecki RA, Ditaranto M, Gladysz P, Haugen NEL, Katelbach-Wozniak A, Klimanek A, Sladek S, Szlek A, Wecel G (2017) CFD modeling and thermodynamic analysis of a concept of a MILD-OXY combustion large scale pulverized coal boiler. Energy 140:1305–1315CrossRefGoogle Scholar
  225. 225.
    Chen L, Yong SZ, Ghoniem AF (2012) Oxy-fuel combustion of pulverized coal: characterization, fundamentals, stabilization and CFD modeling. Prog Energy Combust Sci 38:156–214CrossRefGoogle Scholar
  226. 226.
    Li P, Mi J, Dally B, Wang F, Wang L, Liu Z et al (2011) Progress and recent trend in MILD combustion. Sci China Technol Sci 54:255–269CrossRefGoogle Scholar
  227. 227.
    Stadler H, Ristic D, Foerster M, Schuster A, Kneer R, Scheffknecht G (2009) NOx-emissions from flameless coal combustion in air, Ar/O2 and CO2/O2. Proc Combust Inst 32:3131–3138CrossRefGoogle Scholar
  228. 228.
    Perrone D, Amelio M (2016) Numerical investigation of oxy-mild combustion of pulverized coal in a pilot furnace. Energy Procedia 101:1191–1198CrossRefGoogle Scholar
  229. 229.
    Ditaranto M, Hals J (2006) Combustion instabilities in sudden expansion oxy–fuel flames. Combust Flame 146:493–512CrossRefGoogle Scholar
  230. 230.
    Amato A, Hudak B, D’Souza P, D’Carlo P, Noble D, Scarborough D, Seitzman J, Lieuwen T (2011) Measurements and analysis of CO and O2 emissions in CH4/CO2/O2 flames. Proc Combust Inst 33:3399–3405CrossRefGoogle Scholar
  231. 231.
    Ramadan IA, Ibrahim AH, Abou-Arab TW, Rashwan SS, Nemitallah MA, Habib MA (2016) Effects of oxidizer flexibility and bluff-body blockage ratio on flammability limits of diffusion flames. Appl Energy 178:19–28CrossRefGoogle Scholar
  232. 232.
    Jerzak W, Kuźnia M (2016) Experimental study of impact of swirl number as well as oxygen and carbon dioxide content in natural gas combustion air on flame flashback and blow-off. J Nat Gas Sci Eng 29:46–54CrossRefGoogle Scholar
  233. 233.
    Shi B, Zhua Z, Wanga N, Lub P, Ishizukac S (2015) An experimental study on oxy-fuel combustion of methane under various oxygen mole fractions. In: 8th international symposium on coal combustion, Beijing, ChinaGoogle Scholar
  234. 234.
    Huang Y, Yang V (2005) Effect of swirl on combustion dynamics in a lean-premixed swirl-stabilized combustor. Proc Combust Inst 30:1775–1782CrossRefGoogle Scholar
  235. 235.
    Tunçer O, Kaynaroglu B, Karakaya MC, Kahraman S, Çetiner-Yildirim O, Baytas C (2014) Preliminary investigation of a swirl stabilized premixed combustor. Fuel 115:870–874CrossRefGoogle Scholar
  236. 236.
    Strakey P, Sidwell T, Ontko J (2007) Investigation of the effects of hydrogen addition on lean extinction in a swirl stabilized combustor. Proc Combust Inst 31:3173–3180CrossRefGoogle Scholar
  237. 237.
    Davis LB, Black SH (2000) GE power systems, GER-3568GGoogle Scholar
  238. 238.
    Evulet AT, ELKady AM, Branda AR, Chinn D (2009) On the performance and operability of GE’s dry low NOx combustors utilizing exhaust gas recirculation for postcombustion carbon capture. Energy Procedia 1:3809–3816CrossRefGoogle Scholar
  239. 239.
    Trimm D (1983) Catalytic combustion. Appl Catal 7:249–282CrossRefGoogle Scholar
  240. 240.
    Mantzaras J (2008) Catalytic combustion of syngas. Combust Sci Technol 180:1137–1168CrossRefGoogle Scholar
  241. 241.
    Li WB, Wang JX, Gong H (2010) Catalytic combustion of VOCs on non-noble metal catalysts. Catal Today 148:81–87CrossRefGoogle Scholar
  242. 242.
    Noiray N, Durox D, Schuller T, Candel S (2007) Passive control of combustion instabilities involving premixed flames anchored on perforated plates. Proc Combust Inst 31:1283–1290CrossRefGoogle Scholar
  243. 243.
    Noiray N, Durox D, Schuller T, Candel S (2009) Dynamic phase converter for passive control of combustion instabilities. Proc Combust Inst 32:3163–3170CrossRefGoogle Scholar
  244. 244.
    Altay HM, Speth RL, Hudgins DE, Ghoniem AF (2009) The impact of equivalence ratio oscillations on combustion dynamics in a backward-facing step combustor. Combust Flame 156:2106–2116CrossRefGoogle Scholar
  245. 245.
    Wei H, Gao D, Zhou L, Feng D, Chen R (2017) Different combustion modes caused by flame-shock interactions in a confined chamber with a perforated plate. Combust Flame 178:277–285CrossRefGoogle Scholar
  246. 246.
    Wood S, Harris AT (2008) Porous burners for lean-burn applications. Prog Energy Combust Sci 34:667–684CrossRefGoogle Scholar
  247. 247.
    Rørtveit GJ, Zepter K, Skreiberg Q, Fossum M, Hustad JE (2002) A comparison of low-NOx burners for combustion of methane and hydrogen mixtures. Proc Combust Inst 29:1123–1129CrossRefGoogle Scholar
  248. 248.
    Bottausci F, Cardonne C, Meinhart C, Mezić I (2007) An ultrashort mixing length micromixer: the shear superposition micromixer. Lab Chip 7:396–398CrossRefGoogle Scholar
  249. 249.
    Bhagat AS, Peterson EK, Papautsky I (2007) A passive planar micromixer with obstructions for mixing at low Reynolds numbers. J Micromech Microeng 17:1017–1024CrossRefGoogle Scholar
  250. 250.
    Tofteberg T, Skolimowski M, Andreassen E, Geschke O (2010) A novel passive micromixer: lamination in a planar channel system. Microfluid Nanofluidics 8:209–215CrossRefGoogle Scholar
  251. 251.
    Zeldovich YA (1947) Oxidation of nitrogen in combustion. Academy of Sciences of USSR, Institute of Chemical Physics, Moscow-LeningradGoogle Scholar
  252. 252.
    Liss B, Wilson BR, Wilson BW (2017) Mobil tensor holdings LLC and mobile tensor Ip holdings LLC. U.S. patent 20170218284A1Google Scholar
  253. 253.
    Barnes FJ, Bromly JH, Edwards TJ, Madngezewsky R (1988) NOx emissions from radiant gas burners. J Inst Energy 155:184–188Google Scholar
  254. 254.
    Lieuwen TC, Yang V (2013) Gas turbine emissions. Cambridge Aerospace Series, University Press, CambridgeGoogle Scholar
  255. 255.
    Schefer RW, Namazian M, Kelly J (1991) In: Combustion research facility news, vol 3, number 4. SandiaGoogle Scholar
  256. 256.
    Glarborg P, Jensen AD, Johnsson JE (2003) Fuel nitrogen conversion in solid fuel fired systems. Prog Energy Combust Sci 29:89–113CrossRefGoogle Scholar
  257. 257.
    Schnelle KB Jr, Dunn RF, Ternes ME (2015) Air pollution control technology handbook. CRC Press, pp 271–283Google Scholar
  258. 258.
    Booth RC, Kosvic TC, Parikh NJ (1997) Presented at EPRI-DOE-EPA combined utility air pollutant control symposium, Washington, DC, 25–29 AugGoogle Scholar
  259. 259.
    Wood SC (1994) Select the right IMOx control technology. Chem Eng Progr 90:32Google Scholar
  260. 260.
    John Zink Company (1993) Burner design parameters for flue gas NOx control. Technical Paper 4010BGoogle Scholar
  261. 261.
    Bortz SJ et al (1997) Ultra-low NOx rapid mix burner demonstration at Con Edison’s 59th Street Station. Presented at EPRI-DOE-EPA combined utility air pollutant control symposium, Washington, DC, 25–29 AugGoogle Scholar
  262. 262.
    Chen W et al (1997) Deviation and application of a global SNCR model in maximizing NOx reduction. Presented at EPRI-DOE-EPA combined utility air pollutant control symposium, Washington, DC, 25–29 AugGoogle Scholar
  263. 263.
    Reyes BE, Cutshaw TR (1999) SCONOx™ catalytic absorption system. Western Energy, p 13Google Scholar
  264. 264.
    Ferrell R (2000) Controlling NO (x) emissions: a cooler alternative. Pollut Eng 32:50Google Scholar
  265. 265.
    Saravanamuttoo HIH, Rogers GFC, Cohen H (2001) Gas turbine theory. Pearson EducationGoogle Scholar
  266. 266.
    Giampaolo T (2003) The gas turbine hand book: principles and practices, 2nd edn. Fairmont Press Inc, LilburnGoogle Scholar
  267. 267.
    Lefebvre AH (1998) Gas turbine combustion. Taylor & Francis, LondonGoogle Scholar
  268. 268.
    Han JC, Dutta S, Ekkad S (2012) Gas turbine heat transfer and cooling technology. CRC PressGoogle Scholar
  269. 269.
    Schilke PW, Foster AD, Pepe JJ (2004) Advanced gas turbine materials and coatings. General Electric CompanyGoogle Scholar
  270. 270.
    Hicks B (1987) High-temperature sheet materials for gas turbine applications. Mater Sci Technol 3:772–781CrossRefGoogle Scholar
  271. 271.
    Zonfrillo G, Giovannetti I, Manetti M (2008) Material selection for high temperature applications. Meccanica 43:125–131zbMATHCrossRefGoogle Scholar
  272. 272.
    Halford GR, Saltsman JF, Verrilli MJ, Arya VINODK (1992) In: Advances in fatigue lifetime predictive techniques. ASTM InternationalGoogle Scholar
  273. 273.
    Kumar GM, Rose JBR (2015) Numerical comparative study on convective heat transfer coefficient in a combustor liner of gas turbine with coating. Int J Mech Eng Res. ISSN 0973-4562Google Scholar
  274. 274.
    Ragupathy R, Mishra RK, Misal RD (2011) Life analysis of TBC on an aero engine combustor based on in-service failures data. J Aerosp Sci Technol 63:158–164Google Scholar
  275. 275.
    Ragupathy R, Panigrahi SK, Mishra RK (2013) Effects of interface roughness on the life estimation of a thermal barrier coating layer. Int J Surf Sci Eng 7:269–284CrossRefGoogle Scholar
  276. 276.
    Padture NP, Gell M, Jordan EH (2002) Thermal barrier coatings for gas-turbine engine applications. Science 296:280–284CrossRefGoogle Scholar
  277. 277.
    Rajendran R (2012) Gas turbine coatings—an overview. Eng Fail Anal 26:355–369CrossRefGoogle Scholar
  278. 278.
    Mishra RK (2017) Life enhancement of gas turbine combustor liner through thermal barrier coating. J Fail Anal Prev 17:914–918CrossRefGoogle Scholar
  279. 279.
    Brewer D (1999) HSR/EPM combustor materials development program. Mater Sci Eng A 261:284–291CrossRefGoogle Scholar
  280. 280.
    Liu Y, Sun X, Sethi V, Nalianda D, Li YG, Wang L (2017) Review of modern low emissions combustion technologies for aero gas turbine engines. Prog Aerosp Sci 94:12–45CrossRefGoogle Scholar
  281. 281.
    Miriyala N, Fahme A, van Roode M (2001) In: ASME turbo expo 2001: power for land, sea, and air. American Society of Mechanical Engineers, New Orleans, Louisiana, June 2001, p V004T02A009Google Scholar
  282. 282.
  283. 283.
    Matta RK, Mercer GD, Tuthill RS (2000) Power systems for the 21st century-“H” gas turbine combined-cycles. GE Power Systems, Schenectady, NYGoogle Scholar
  284. 284.
    Bland R, Ryan W, Abou-Jaoude K, Bandaru R, Harris A, Rising B (2004) Siemens W501F gas turbine: ultra low NOx combustion system development. Siemens Westinghouse Power Corporation, POWER-GEN InternationalGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Medhat A. Nemitallah
    • 1
    Email author
  • Mohamed A. Habib
    • 2
  • Hassan M. Badr
    • 3
  1. 1.TIC in CCS and Mechanical Engineering DepartmentKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia
  2. 2.TIC in CCS and Mechanical Engineering DepartmentKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia
  3. 3.TIC in CCS and Mechanical Engineering DepartmentKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia

Personalised recommendations