Advertisement

Ion Transport Membranes (ITMs) for Oxygen Separation

  • Medhat A. NemitallahEmail author
  • Mohamed A. Habib
  • Hassan M. Badr
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

The high efficiency penalty associated with using cryogenic O2 separation units in oxy-combustion systems called for alternative methods for O2 production. One of these methods is the use of ion transport membranes (ITMs) for O2 separation from air. These ITMs have the capability of extracting oxygen from air at high temperatures (above 700 °C). The permeation of oxygen through the ion transport membranes depends on the membrane type, thickness, operating temperature, and the difference in oxygen partial pressure across the membrane.

References

  1. 1.
    Balachandran U, Kleefisch MS, Kobylinski TP, Morissette SL, Pei S (1997) Oxygen ion-conducting dense ceramic membranes. Assigned to Amoco Co., US Patent 5,639,437Google Scholar
  2. 2.
    Bernardo P, Drioli E, Golemme G (2009) Membrane gas separation: a review of state of the art. Ind Chem Eng 48(1):4638–4663CrossRefGoogle Scholar
  3. 3.
    Farooqui AE, Badr HM, Habib MA, Ben-Mansour R (2014) Numerical investigation of combustion characteristics in an oxygen transport reactor. Int J Energy Res 38(5):638–651CrossRefGoogle Scholar
  4. 4.
    Habib MA, Ahmed P, Ben-Mansour R, Badr HM, Kirchen P, Ghoniem AF (2013) Modeling of a combined ion transport and porous membrane reactor for oxy-combustion. J Membr Sci 446:230–243CrossRefGoogle Scholar
  5. 5.
    Ben-Mansour R, Habib MA, Badr HM, Nemitallah MA (2012) Characteristics of oxy-fuel combustion in an oxygen transport reactor. Energy Fuels 26(7):4599–4606CrossRefGoogle Scholar
  6. 6.
    Nemitallah MA, Habib MA, Mezghani K (2015) Experimental and numerical study of oxygen separation and oxy-combustion characteristics inside a button-cell LNO-ITM reactor. Energy 84:600–611CrossRefGoogle Scholar
  7. 7.
    Xu SJ, Thomson WJ (1999) Oxygen permeation rates through ion-conducting perovskite membranes. Chem Eng Sci 54:3839–3850CrossRefGoogle Scholar
  8. 8.
    Ruia Z, Lia Y, Lin YS (2009) Analysis of oxygen permeation through dense ceramic membranes with chemical reactions of finite rate. Chem Eng Sci 64:172–179CrossRefGoogle Scholar
  9. 9.
    Akin FT, Lin YS (2004) Oxygen permeation through oxygen ionic or mixed-conducting ceramic membranes with chemical reactions. J Membr Sci 231:133–146CrossRefGoogle Scholar
  10. 10.
    Habib MA, Ben Mansour R, Nemitallah MA (2013) Modeling of oxygen permeation through a LSCF ion transport membrane. Comput Fluids 76:1–10CrossRefGoogle Scholar
  11. 11.
    Hong J, Kirchen P, Ghoniem AF (2012) Numerical simulation of ion transport membrane reactors: Oxygen permeation and transport and fuel conversion. J Membr Sci 407:71–85CrossRefGoogle Scholar
  12. 12.
    Ben-Mansour R, Nemitallah MA, Habib MA (2013) Numerical investigation of oxygen permeation and methane oxy-combustion in a stagnation flow ion transport membrane reactor. Energy 54:322–332CrossRefGoogle Scholar
  13. 13.
    Nemitallah MA, Habib MA, BenMansour R (2013) Investigations of oxy-fuel combustion and oxygen permeation in an ITM reactor using a two-step oxy-combustion reaction kinetics model. J Membr Sci 432:1–12CrossRefGoogle Scholar
  14. 14.
    Hong J, Kirchen P, Ghoniem AF (2013) Interactions between oxygen permeation and homogeneous-phase fuel conversion on the sweep side of an ion transport membrane. J Membr Sci 428:309–322CrossRefGoogle Scholar
  15. 15.
    Hunt A, Dimitrakopoulos G, Kirchen P, Ghoniem AF (2014) Measuring the oxygen profile and permeation flux across an ion transport (La0.9Ca0.1FeO3−δ) membrane and the development and validation of a multi-step surface exchange model. J Membr Sci 468:62–72CrossRefGoogle Scholar
  16. 16.
    Kirchen P, Apo DJ, Hunt A, Ghoniem AF (2013) A novel ion transport membrane reactor for fundamental investigations of oxygen permeation and oxy-combustion under reactive flow conditions. Proc Combust Inst 34:3463–3470CrossRefGoogle Scholar
  17. 17.
    Mancini ND, Mitsos A (2011) Ion transport membrane reactors for oxy-combustion; part II: analysis and comparison of alternatives. Energy 36:4721–4739CrossRefGoogle Scholar
  18. 18.
    Nemitallah MA, Habib MA, Ben-mansour R, Ghoniem AF (2014) Design of an ion transport membrane reactor for gas turbine combustion application. J Membr Sci 450:60–71CrossRefGoogle Scholar
  19. 19.
    Mezghani K, Hamza A, Habib MA, Lee D, Shao-Horn Y (2015) Effect of microstructure and thickness on oxygen permeation of La2NiO4+δ membranes. Ceram Int 42(1):666–672CrossRefGoogle Scholar
  20. 20.
    Habib MA, Ahmed P, Ben-Mansour R, Mezghani K, Alam Z, Shao-Horn Y, Ghoniem AF (2015) Experimental and numerical investigation of la2NiO4+δ membranes for oxygen separation: geometry optimization and model validation. J Energy Res Technol 137(3):03110CrossRefGoogle Scholar
  21. 21.
    Wang L, Imashuku S, Grimaud A, Lee D, Mezghani K, Habib MA, Shao-Horn Y (2013) Enhancing oxygen permeation of electronically short-circuited oxygen-ion conductors by decorating with mixed ionic-electronic conducting oxides. ECS Electrochem Lett 2(11):77–81CrossRefGoogle Scholar
  22. 22.
    Imashuku S, Wang L, Mezghani K, Habib MA, Shao-Horn Y (2013) Oxygen permeation from oxygen ion-conducting membranes coated with porous metals or mixed ionic and electronic conducting oxides. J Electrochem Soc 160(11):148–153CrossRefGoogle Scholar
  23. 23.
    Habib MA, Badr HM, Ahmed SF, Ben-Mansour R, Mazghani K, Imashuku GJ, Shao-Horn Y, Mancini N, Mitsos A, Kirchen P, Ghoneim AF (2011) A review of recent developments in carbon capture utilizing oxy-fuel combustion in conventional and ion transport membrane systems. Int J Energy Res 35(9):741–764CrossRefGoogle Scholar
  24. 24.
    Salehi M, Pfaff EM, Junior RM, Bergmann CP, Diethelm S, Neururer C, Graule T, Grobety B, Clemens FJ (2013) Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) feedstock development and optimization for thermoplastic forming of thin planar and tubular oxygen separation membranes. J Membr Sci 443:237–245CrossRefGoogle Scholar
  25. 25.
    Baumann S, Meulenberg WA, Buchkremer HP (2013) Manufacturing strategies for asymmetric ceramic membranes for efficient separation of oxygen from air. J Eur Ceram Soc 33(7):1251–1261CrossRefGoogle Scholar
  26. 26.
    Li X, Kerstiens T, Markus T (2013) Oxygen permeability and phase stability of Ba0.5Sr0.5Co0.8Fe0.2O3−δ perovskite at intermediate temperatures. J Membr Sci 438:83–89CrossRefGoogle Scholar
  27. 27.
    Baumann S, Serra JM, Lobera MP, Escolástico S, Schulze-Küppers F, Meulenberg W (2011) Ultrahigh oxygen permeation flux through supported Ba0.5Sr0.5Co0.8Fe0.2O3−δ membranes. J Membr Sc 377(1):198–205Google Scholar
  28. 28.
    Haworth P, Smart S, Glasscock J, Diniz da Costa JC (2011) Yttrium doped BSCF membranes for oxygen separation. Sep Purif Technol 81(1):88–93CrossRefGoogle Scholar
  29. 29.
    Menzler NH, Han F, Van Gestel T, Schafbauer W, Schulze-Küppers F, Baumann S, Uhlenbruck S et al (2013) Application of thin-film manufacturing technologies to solid oxide fuel cells and gas separation membranes. Int J Appl Ceram Technol 10(3):421–427CrossRefGoogle Scholar
  30. 30.
    Buysse C, Kovalevsky A, Snijkers F, Buekenhoudt A, Mullens S, Luyten J, Kretzschmar J, Lenaerts S (2011) Development, performance and stability of sulfur-free, macrovoid-free BSCF capillaries for high temperature oxygen separation from air. J Membr Sci 372(1–2):239–248CrossRefGoogle Scholar
  31. 31.
    Liu H, Pang Z, Tan X, Shao Z, Sunarso J, Ding R, Liu S (2009) Enhanced oxygen permeation through perovskite hollow fiber membranes by methane activation. Ceram Int 35(4):1435–1439CrossRefGoogle Scholar
  32. 32.
    Hong J, Kirchen P, Ghoniem AF (2013) Interactions between oxygen permeation and homogeneous-phase fuel conversion on the sweep side of an ion transport membrane. J Memb Sci 428:309–322CrossRefGoogle Scholar
  33. 33.
    Hong J, Kirchen P, Ghoniem AF (2012) Numerical simulation of ion transport membrane reactors: Oxygen permeation and transport and fuel conversion. J Memb Sci 407:71–85CrossRefGoogle Scholar
  34. 34.
    Amato A, Hudak R, Noble DR, Scarborough D, Peter AD, Seitzman JM, Lieuwen TC (2010) Methane oxy-combustion for low CO2 cycles: measurements and modeling of CO and O2 emissions. In: ASME turbo expo 2010: power for land, sea, and air, pp 213–222Google Scholar
  35. 35.
    Zanganeh KE, Shafeen A, Thambimuthu K (2005) A comparative study of refinery fuel gas oxy-fuel combustion options for CO2 capture using simulated process data. In: Greenhouse gas control technologies, pp 1117–1123CrossRefGoogle Scholar
  36. 36.
    Luo H, Jiang H, Klande T, Liang F, Cao Z, Wang H, Caro J (2012) Rapid glycine-nitrate combustion synthesis of the CO2-stable dual phase membrane 40Mn1.5Co1.5O4-δ–60Ce0.9Pr0.1O2−δ for CO2 capture via an oxy-fuel process. J Membr Sci 423:450–458CrossRefGoogle Scholar
  37. 37.
    Dyer PN, Richards RE, Russek SL, Taylor DM (2000) Ion transport membrane technology for oxygen separation and syngas production. Solid State Ionics 134:21–33CrossRefGoogle Scholar
  38. 38.
    Miller CF, Chen J, Carolan MF, Foster EP (2014) Advances in ion transport membrane technology for syngas production. Catal Today 228:152–157CrossRefGoogle Scholar
  39. 39.
    Izquierdo U, Barrio VL, Cambra JF, Requies J, Güemez MB, Arias PL, Kolb G, Zapf R, Gutiérrez AM, Arraibi JR (2012) Hydrogen production from methane and natural gas steam reforming in conventional and microreactor reaction systems. Int J Hydrogen Energy 37:7026–7033CrossRefGoogle Scholar
  40. 40.
    Liu Z, Chu B, Zhai X, Jin Y, Cheng Y (2012) Total methanation of syngas to synthetic natural gas over Ni catalyst in a micro-channel reactor. Fuel 95:599–605CrossRefGoogle Scholar
  41. 41.
    Rostrup-Nielsen JR (1993) Production of synthesis gas. Catal Today 18:305–324CrossRefGoogle Scholar
  42. 42.
    Mokheimer EM, Hussain MI, Ahmed S, Habib MA, Al-Qutub AA (2015) On the modeling of steam methane reforming. J Energy Res Technol 137:012001CrossRefGoogle Scholar
  43. 43.
    Simakov DS, Wright MM, Ahmed S, Mokheimer EM, Román-Leshkov Y (2015) Solar thermal catalytic reforming of natural gas: a review on chemistry, catalysis and system design. Catal Sci Technol 5:1991–2016CrossRefGoogle Scholar
  44. 44.
    Sheu EJ, Mokheimer EM, Ghoniem AF (2015) A review of solar methane reforming systems. Int J Hydrogen Energy 40:12929–12955CrossRefGoogle Scholar
  45. 45.
    Said SAM, Simakov DS, Mokheimer EM, Habib MA, Ahmed S, Waseeuddin M et al (2015) Computational fluid dynamics study of hydrogen generation by low temperature methane reforming in a membrane reactor. Int J Hydrogen Energy 40(8):3158–3169CrossRefGoogle Scholar
  46. 46.
    Said SAM, Simakov DSA, Waseeuddin M, Román-Leshkov Y (2016) Solar molten salt heated membrane reformer for natural gas upgrading and hydrogen generation: a CFD model. Sol Energy 124:163–176CrossRefGoogle Scholar
  47. 47.
    Sheu EJ, Mitsos A, Eter AA, Mokheimer EM, Habib MA, Al-Qutub A (2012) A review of hybrid solar–fossil fuel power generation systems and performance metrics. J Sol Energy Eng 134(4):041006CrossRefGoogle Scholar
  48. 48.
    Sheu EJ, Mokheimer EM, Ghoniem AF (2015) Dry redox reforming hybrid power cycle: performance analysis and comparison to steam redox reforming. Int J Hydrogen Energy 40:2939–2949CrossRefGoogle Scholar
  49. 49.
    Delsman ER (2005) Microstructured reactors for a portable hydrogen production unit. Ph.D thesis, Technische Universiteit Eindhoven, EindhovenGoogle Scholar
  50. 50.
    Christopher CM, Bennett DL, Carolan MF, Miller CF, Steppan JJ, Waldron WE (2006) ITM syngas: ceramic membrane technology for lower cost conversion of natural gas. In: AIChE Spring National Meeting 25, 2006Google Scholar
  51. 51.
    Taamallah S, Vogiatzaki K, Alzahrani F, Mokheimer EM, Habib MA, Ghoniem AF (2015) Fuel flexibility, stability and emissions in premixed hydrogen-rich gas turbine combustion: technology, fundamentals, and numerical simulations. Appl Energy 154:1020–1047Google Scholar
  52. 52.
    Alzahrani FM, Sanusi YS, Vogiatzaki K, Ghoniem AF, Habib MA, Mokheimer EM (2015) Evaluation of the accuracy of selected syngas chemical mechanisms. J Energy Res Technol 137:042201CrossRefGoogle Scholar
  53. 53.
    Mokheimer EM, Sanusi YS, Habib MA (2016) Numerical study of hydrogen-enriched methane–air combustion under ultra-lean conditions. Int J Energy Res 40(6):743–762CrossRefGoogle Scholar
  54. 54.
    Sanusi YS, Habib MA, Mokheimer EM (2015) Experimental study on the effect of hydrogen enrichment of methane on the stability and emission of nonpremixed swirl stabilized combustor. J Energy Res Technol 137:032203CrossRefGoogle Scholar
  55. 55.
    Schubert K, Brandner J, Fichtner M, Linder G, Schygulla U, Wenka A (2001) Microstructure devices for applications in thermal and chemical process engineering. Microscale Thermophys Eng 5:17–39CrossRefGoogle Scholar
  56. 56.
    Ehrfeld W, Hessel V, Löwe H (2000) Microreactors: new technology for modern chemistry. Wiley-VCH, Weinheim, p 2000CrossRefGoogle Scholar
  57. 57.
    Vorontsov VA, Gribovskiy AG, Makarshin LI, Andreev DV, Ylianitsky VY, Parmon VN (2014) Influence of a reaction mixture streamline on partial oxidation of methane in an asymmetric microchannel reactor. Int J Hydrogen Energy 39:325–330CrossRefGoogle Scholar
  58. 58.
    Enger BC, Walmsley J, Bjørgum E, Lødeng R, Pfeifer P, Schubert K, Holmen A, Venvik HJ (2008) Performance and SEM characterization of Rh impregnated microchannel reactors in the catalytic partial oxidation of methane and propane. Chem Eng J 144:489–501CrossRefGoogle Scholar
  59. 59.
    Schneider A, Mantzaras J, Jansohn P (2006) Experimental and numerical investigation of the catalytic partial oxidation of CH4/O2 mixtures diluted with H2O and CO2 in a short contact time reactor. Chem Eng Sci 61:4634–4649CrossRefGoogle Scholar
  60. 60.
    Sadykov V, Bobrova L, Pavlova S, Simagina V, Makarshin L, Parmon V, Ross JRH, Veen ACV (2012) Syngas generation from hydrocarbons and oxygenates with structured, catalysts. Nova Science Publishers, New YorkGoogle Scholar
  61. 61.
    Enger BC, Lødeng R, Holmen A (2008) A review of catalytic partial oxidation of methane to synthesis gas with emphasis on reaction mechanisms over transition metal catalysts. Appl Catal A 346:1–27CrossRefGoogle Scholar
  62. 62.
    Vernikovskaya NV, Bobrova LN, Pinaeva LG, Sadykov VA, Zolotarskii IA, Sobyanin VA, Buyakou I, Kalinin V, Zhdanok S (2007) Transient behavior of the methane partial oxidation in a short contact time reactor: modeling on the base of catalyst detailed chemistry. Chem Eng J 134:180–189CrossRefGoogle Scholar
  63. 63.
    Silva FA, Resende KA, Da Silva AM, De Souza KR, Mattos LV, Montes M, Souza-Aguiar EF, Noronha FB, Hori CE (2012) Syngas production by partial oxidation of methane over Pt/CeZrO2/Al2O3 catalysts. Catal Today 180(1):111–116CrossRefGoogle Scholar
  64. 64.
    Tsai CY, Dixon AG, Moser WR, Ma YH (1997) Dense perovskite membrane reactors for the partial oxidation of methane to syngas. AIChE J 43:2741CrossRefGoogle Scholar
  65. 65.
    Li S, Jin W, Huang P, Xu N, Shi J, Payzant MZEA, Ma YH, Hu MZC (1999) Perovskite-related ZrO2-doped SrCO0.4Fe0.6O3−δ membrane for oxygen permeation. AIChE J 45:276Google Scholar
  66. 66.
    Yang C, Xu N, Shi J (1998) Experimental and modeling study on a packed-bed membrane reactor for partial oxidation of methane to formaldehyde. Ind Eng Chem Res 37:2601CrossRefGoogle Scholar
  67. 67.
    Balachandran U, Dusk JT, Maiya PS, Ma B, Mieville RL, Kleefisch MS, Udovich CA (1997) Ceramic membrane reactor for converting methane to syngas. Catal Today 36:265CrossRefGoogle Scholar
  68. 68.
    Habib MA, Salaudeen SA, Nemitallah MA, Ben-Mansour R, Mokheimer EM (2016) Numerical investigation of syngas oxy-combustion inside a LSCF-6428 oxygen transport membrane reactor. Energy 96:654–665CrossRefGoogle Scholar
  69. 69.
    Nemtallah MA, Habib MA (2017) Numerical investigation of liquid methanol evaporation and oxy-combustion in a button-cell ITM reactor. Appl Therm Eng 112:378–391CrossRefGoogle Scholar
  70. 70.
    Smith JB, Norby T (2006) On the steady state oxygen permeation through La2NiO4+δ membranes. J Electrochem Soc 153:233–238CrossRefGoogle Scholar
  71. 71.
    Mancini ND, Mitsos A (2011) Ion transport membrane reactors for oxy-combustion-part I: intermediate fidelity modeling. Energy 36:4701–4720CrossRefGoogle Scholar
  72. 72.
    O’Rourke PJ (1981) Collective drop effects on vaporizing liquid sprays. Ph.D thesis, Princeton University, Princeton, New JerseyGoogle Scholar
  73. 73.
    Taylor GI (1963) The shape and acceleration of a drop in a high speed air stream. Technical report in the scientific papers of G.IGoogle Scholar
  74. 74.
    O’Rourke PJ, Amsden AA (1987) The TAB method for numerical calculation of spray droplet breakup. SAE technical paper, SAE:872089Google Scholar
  75. 75.
    Ranz WE, Marshall WR (1952) Evaporation from drops, part II. Chem Eng Prog 48:173–180Google Scholar
  76. 76.
    Lacas F, Leroux B, Darabiha N (2005) Experimental study of air dilution in oxy-liquid fuel flames. Proc Combust Inst 30:2037–2045CrossRefGoogle Scholar
  77. 77.
    Yu S-C, Huang C-W, Liao C-H, Wu JCS, Chang S-T, Chen K-H (2011) A novel membrane reactor for separating hydrogen and oxygen in photocatalytic water splitting. J Memb Sci 382:291–299.  https://doi.org/10.1016/j.memsci.2011.08.022CrossRefGoogle Scholar
  78. 78.
    Hisatomi T, Kubota J, Domen K (2014) Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem Soc Rev 43:7520–7535.  https://doi.org/10.1039/C3CS60378DCrossRefGoogle Scholar
  79. 79.
    Maeda K (2011) Photocatalytic water splitting using semiconductor particles: history and recent developments. J Photochem Photobiol C Photochem Rev 12:237–268.  https://doi.org/10.1016/j.jphotochemrev.2011.07.001CrossRefGoogle Scholar
  80. 80.
    Kato H, Kudo A (2003) Photocatalytic water splitting into H2 and O2 over various tantalate photocatalysts. Catal Today 78:561–569.  https://doi.org/10.1016/S0920-5861(02)00355-3CrossRefGoogle Scholar
  81. 81.
    Park CY, Lee TH, Dorris SE, Lu Y, Balachandran U (2011) Oxygen permeation and coal-gas-assisted hydrogen production using oxygen transport membranes. Int J Hydrogen Energy 36:9345–9354.  https://doi.org/10.1016/j.ijhydene.2011.04.090CrossRefGoogle Scholar
  82. 82.
    Park CY, Lee TH, Dorris SE, Balachandran U (2010) Hydrogen production from fossil and renewable sources using an oxygen transport membrane. Int J Hydrogen Energy 35:4103–4110.  https://doi.org/10.1016/j.ijhydene.2010.02.025CrossRefGoogle Scholar
  83. 83.
    Mundschau MV, Xie X, Evenson CR IV, Sammells AF (2006) Dense inorganic membranes for production of hydrogen from methane and coal with carbon dioxide sequestration. Catal Today 118:12–23.  https://doi.org/10.1016/j.cattod.2006.01.042CrossRefGoogle Scholar
  84. 84.
    Rahimpour MR, Arab Aboosadi Z, Jahanmiri AH (2012) Synthesis gas production in a novel hydrogen and oxygen perm-selective membranes tri-reformer for methanol production. J Nat Gas Sci Eng 9:149–159.  https://doi.org/10.1016/j.jngse.2012.06.007CrossRefGoogle Scholar
  85. 85.
    Song SJ, Moon JH, Lee TH, Dorris SE, Balachandran U (2008) Thickness dependence of hydrogen permeability for Ni–BaCe0.8Y0.2O3−δ. Solid State Ionics 179:1854–1857.  https://doi.org/10.1016/j.ssi.2008.05.012CrossRefGoogle Scholar
  86. 86.
    Jeon SY, Choi MB, Park CN, Wachsman ED, Song SJ (2011) High sulfur tolerance dual-functional cermet hydrogen separation membranes. J Memb Sci 382:323–327.  https://doi.org/10.1016/j.memsci.2011.08.024CrossRefGoogle Scholar
  87. 87.
    Balachandran U, Lee TH, Dorris SE (2007) Hydrogen production by water dissociation using mixed conducting dense ceramic membranes. Int J Hydrogen Energy 32:451–456.  https://doi.org/10.1016/j.ijhydene.2006.05.010CrossRefGoogle Scholar
  88. 88.
    Balachandran U, Lee TH, Wang S, Dorris SE (2004) Use of mixed conducting membranes to produce hydrogen by water dissociation. Int J Hydrogen Energy 29:291–296.  https://doi.org/10.1016/S0360-3199(03)00134-4CrossRefGoogle Scholar
  89. 89.
    Jeon SY, Im HN, Singh B, Hwang JH, Song SJ (2013) A thermodynamically stable La2NiO4/Gd0.1Ce0.9O1.95 bilayer oxygen transport membrane in membrane-assisted water splitting for hydrogen production. Ceram Int 39:3893–3899.  https://doi.org/10.1016/j.ceramint.2012.10.233CrossRefGoogle Scholar
  90. 90.
    Xu SJ, Thomson WJ (1997) Perovskite-type oxide membranes for the oxidative coupling of methane. AIChE J 43:2731–2740.  https://doi.org/10.1002/aic.690431319CrossRefGoogle Scholar
  91. 91.
    Kharton VV, Yaremchenko AA, Kovalevsky AV, Viskup AP, Naumovich EN, Kerko PF (1999) Perovskite-type oxides for high-temperature oxygen separation membranes. J Memb Sci 163:307–317.  https://doi.org/10.1016/S0376-7388(99)00172-6CrossRefGoogle Scholar
  92. 92.
    Li W, Zhu X, Cao Z, Wang W, Yang W (2015) Mixed ionic-electronic conducting (MIEC) membranes for hydrogen production from water splitting. Int J Hydrogen Energy 40:3452–3461.  https://doi.org/10.1016/j.ijhydene.2014.10.080CrossRefGoogle Scholar
  93. 93.
    Naito H, Arashi H (1995) Hydrogen production from direct water splitting at high temperatures using a ZrO2–TiO2–Y2O3 membrane. Solid State Ionics 79:366–370.  https://doi.org/10.1016/0167-2738(95)00089-OCrossRefGoogle Scholar
  94. 94.
    Lede J, Lapicque F, Villermaux J (1983) Production of hydrogen by direct thermal decomposition of water. Int J Hydrogen Energy 8:675–679.  https://doi.org/10.1016/0360-3199(83)90175-1CrossRefGoogle Scholar
  95. 95.
    Jiang H, Cao Z, Schirrmeister S, Schiestel T, Caro J (2010) A coupling strategy to produce hydrogen and ethylene in a membrane reactor. Angew Chemie Int Ed 49:5656–5660.  https://doi.org/10.1002/anie.201000664CrossRefGoogle Scholar
  96. 96.
    Jiang H, Liang F, Czuprat O, Efimov K, Feldhoff A, Schirrmeister S et al (2010) Hydrogen production by water dissociation in surface-modified BaCo(x)Fe(y)Zr(1-x-y)O(3-delta) hollow-fiber membrane reactor with improved oxygen permeation. Chemistry 16:7898–7903.  https://doi.org/10.1002/chem.200902494CrossRefGoogle Scholar
  97. 97.
    Jiang H, Wang H, Liang F, Werth S, Schirrmeister S, Schiestel T et al (2010) Improved water dissociation and nitrous oxide decomposition by in situ oxygen removal in perovskite catalytic membrane reactor. Catal Today 156:187–190.  https://doi.org/10.1016/j.cattod.2010.02.027CrossRefGoogle Scholar
  98. 98.
    Jiang H, Wang H, Werth S, Schiestel T, Caro J (2008) Simultaneous production of hydrogen and synthesis gas by combining water splitting with partial oxidation of methane in a hollow-fiber membrane reactor. Angew Chem Int Ed 47:9341–9344.  https://doi.org/10.1002/anie.200803899CrossRefGoogle Scholar
  99. 99.
    Evdou A, Nalbandian L, Zaspalis VT (2008) Perovskite membrane reactor for continuous and isothermal redox hydrogen production from the dissociation of water. J Memb Sci 325:704–711.  https://doi.org/10.1016/j.memsci.2008.08.042CrossRefGoogle Scholar
  100. 100.
    Nalbandian L, Evdou A, Zaspalis V (2009) La1−xSrxMO3 (M = Mn, Fe) perovskites as materials for thermochemical hydrogen production in conventional and membrane reactors. Int J Hydrogen Energy 34:7162–7172.  https://doi.org/10.1016/j.ijhydene.2009.06.076CrossRefGoogle Scholar
  101. 101.
    Balachandran U, Dorris SE, Lu Y, Emerson JE, Park CY, Lee TH, et al (2010) Development of dense ceramic membranes for hydrogen separation. Adv Membr Technol Appl 3:1–41.  https://doi.org/10.1016/s0167-2991(01)80347-5CrossRefGoogle Scholar
  102. 102.
    Ikeguchi M, Ishii K, Sekine Y, Kikuchi E, Matsukata M (2005) Improving oxygen permeability in SrFeCo0.5Ox asymmetric membranes by modifying support-layer porous structure. Mater Lett 59:1356–1360.  https://doi.org/10.1016/j.matlet.2004.12.042CrossRefGoogle Scholar
  103. 103.
    Ikeguchi M, Yoshino Y, Kanie K, Nomura M, Kikuchi E, Matsukata M (2003) Effects of preparation method on oxygen permeation properties of SrFeCo0.5Ox membrane. Sep Purif Technol 32:313–318.  https://doi.org/10.1016/s1383-5866(03)00048-0CrossRefGoogle Scholar
  104. 104.
    Ma B, Balachandran U (1998) Phase stability of SrFeCo0.5Ox in reducing environments. Mater Res Bull 33:223–236.  https://doi.org/10.1016/s0025-5408(97)00214-6CrossRefGoogle Scholar
  105. 105.
    Franca RV, Thursfield A, Metcalfe IS (2012) La 0.6Sr0.4Co0.2Fe0.8O3 microtubular membranes for hydrogen production from water splitting. J Memb Sci 389:173–181.  https://doi.org/10.1016/j.memsci.2011.10.027CrossRefGoogle Scholar
  106. 106.
    Lee TH, Park CY, Dorris SEBU (2008) Hydrogen production from steam using oxygen transport membranes. ECS Trans 13:379–384CrossRefGoogle Scholar
  107. 107.
    Balachandran, Lee TH, Dorris SE (2007) Hydrogen production by water dissociation using mixed conducting dense ceramic membranes. Int J Hydrogen Energy 32:451–456.  https://doi.org/10.1016/j.ijhydene.2006.05.010CrossRefGoogle Scholar
  108. 108.
    Meng X, Shang Y, Meng B, Yang N, Tan X, Sunarso J, et al (2016) Bi-functional performances of BaCe0.95Tb0.05O3−δ-based hollow fiber membranes for power generation and hydrogen permeation. JECS J Eur Ceram Soc.  https://doi.org/10.1016/j.jeurceramsoc.2016.06.041CrossRefGoogle Scholar
  109. 109.
    Albo J, Luis P, Irabien A (2010) Carbon dioxide capture from flue gases using a cross-flow membrane contactor and the ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate. Ind Eng Chem Res 49:11045–11051.  https://doi.org/10.1021/ie1014266CrossRefGoogle Scholar
  110. 110.
    Huang CH, Tan CS (2014) A review: CO2 utilization. Aerosol Air Qual Res 14:480–499.  https://doi.org/10.4209/aaqr.2013.10.0326CrossRefGoogle Scholar
  111. 111.
    Fernández F, González-López C (2012) Conversion of CO2 into biomass by microalgae: how realistic a contribution may it be to significant CO2 removal? Appl MicrobiolGoogle Scholar
  112. 112.
    Dai W, Luo S, Yin S, Au C (2009) The direct transformation of carbon dioxide to organic carbonates over heterogeneous catalysts. Appl Catal GenGoogle Scholar
  113. 113.
    Razali N, Lee K, Bhatia S, Mohamed A (2012) Heterogeneous catalysts for production of chemicals using carbon dioxide as raw material: a review. Renew SustainGoogle Scholar
  114. 114.
    Ganesh I (2011) Conversion of carbon dioxide to methanol using solar energy. Curr SciGoogle Scholar
  115. 115.
    Olah G (2013) Towards oil independence through renewable methanol chemistry. Angew Chemie Int EdGoogle Scholar
  116. 116.
    Omae I (2012) Recent developments in carbon dioxide utilization for the production of organic chemicals. Coord Chem RevGoogle Scholar
  117. 117.
    Rihko-Struckmann, L, Peschel A (2010) Assessment of methanol synthesis utilizing exhaust CO2 for chemical storage of electrical energy. Ind Eng Chem ResGoogle Scholar
  118. 118.
    Nguyen VN, Blum L (2015) Syngas and synfuels from H2O and CO2: current status. Chem Ing Tech 87(4):354–375CrossRefGoogle Scholar
  119. 119.
    Fu Q, Mabilat C, Zahid M, Brisse A, Gautier L (2010) Syngas production via high-temperature steam/CO2 co-electrolysis: an economic assessment. Energy Environ Sci 3(10):1382CrossRefGoogle Scholar
  120. 120.
    Agrafiotis C, Roeb M, Sattler C (2015) A review on solar thermal syngas production via redox pair-based water/carbon dioxide splitting thermochemical cycles. Renew Sustain Energy Rev 42:254–285CrossRefGoogle Scholar
  121. 121.
    Itoh N, Sanchez MA, Xu W-C, Haraya K, Hongo M (1993) Application of a membrane reactor system to thermal decomposition of CO2. J Memb Sci 77(2):245–253CrossRefGoogle Scholar
  122. 122.
    Graves C, Ebbesen SD, Mogensen M (2011) Co-electrolysis of CO2 and H2O in solid oxide cells: performance and durability. Solid State Ionics 192(1):398–403CrossRefGoogle Scholar
  123. 123.
    Zhan Z, Kobsiriphat W, Wilson JR, Pillai M, Kim I, Barnet SA (2009) Syngas production by coelectrolysis of CO2/H2O: the basis for a renewable energy cycle. Energy Fuels 23(6):3089–3096CrossRefGoogle Scholar
  124. 124.
    Nigara Y, Cales B (1986) Production of carbon monoxide by direct thermal splitting of carbon dioxide at high temperature. Bull Chem Soc Jpn 59(6):1997–2002CrossRefGoogle Scholar
  125. 125.
    Oehlschlaeger MA, Davidson DF, Jeffries JB, Hanson RK (2005) Carbon dioxide thermal decomposition: observation of incubation. Zeitschrift für Phys Chemie 219(5):555–567CrossRefGoogle Scholar
  126. 126.
    Galvez ME, Loutzenhiser PG, Hischier I, Steinfeld A (2008) CO2 splitting via two-step solar thermochemical cycles with Zn/ZnO and FeO/Fe3O4 redox reactions: thermodynamic analysis. Energy Fuels 22:3544–3550CrossRefGoogle Scholar
  127. 127.
    Stamatiou A, Loutzenhiser PG, Steinfeld A (2010) Solar syngas production from H2O and CO2 via two-step thermochemical cycles based on Zn/ZnO and FeO/Fe3O4 redox reactions: kinetic analysis. Energy Fuels 24(4):2716–2722CrossRefGoogle Scholar
  128. 128.
    Venstrom LJ, Davidson JH (2011) Splitting water and carbon dioxide via the heterogeneous oxidation of zinc vapor: thermodynamic considerations. J Sol Energy Eng 133(1):011017CrossRefGoogle Scholar
  129. 129.
    Chen Z, Kang P, Zhang M-T, Stoner BR, Meyer TJ (2013) Cu(ii)/Cu(0) electrocatalyzed CO2 and H2O splitting. Energy Environ Sci 6(3):813CrossRefGoogle Scholar
  130. 130.
    Furler P, Scheffe JR, Steinfeld A (2012) Syngas production by simultaneous splitting of H2O and CO2 via ceria redox reactions in a high-temperature solar reactor. Energy Environ Sci 5(3):6098CrossRefGoogle Scholar
  131. 131.
    Furler P, Scheffe J, Gorbar M, Moes L, Vogt U, Steinfeld A (2012) Solar thermochemical CO2 splitting utilizing a reticulated porous ceria redox system. Energy Fuels 26(11):7051–7059CrossRefGoogle Scholar
  132. 132.
    Lorentzou S, Karagiannakis G, Pagkoura C, Zygogianni A (2011) CO2 and H2O splitting for thermochemical production of solar fuels using nonstoichiometric ceria and ceria/zirconia solid solutions. Energy Fuels 25:4836–4845CrossRefGoogle Scholar
  133. 133.
    Smestad GP, Steinfeld A (2012) Review: photochemical and thermochemical production of solar fuels from H2O and CO2 using metal oxide catalysts. Ind Eng Chem Res 51:11828–11840CrossRefGoogle Scholar
  134. 134.
    Lahijani P, Zainal ZA, Mohammadi M, Mohamed AR (2015) Conversion of the greenhouse gas CO2 to the fuel gas CO via the Boudouard reaction: a review. Renew Sustain Energy Rev 41:615–632CrossRefGoogle Scholar
  135. 135.
    Rayne S (2008) Thermal carbon dioxide splitting: a summary of the peer-reviewed scientific literature. Nat Preced 1(250):1–17Google Scholar
  136. 136.
    Ganesh I (2011) Conversion of carbon dioxide to methanol using solar energy. Curr Sci 101:731–733.  https://doi.org/10.4236/msa.2011.210190CrossRefGoogle Scholar
  137. 137.
    Ganesh I (2014) Conversion of carbon dioxide into methanol—a potential liquid fuel: fundamental challenges and opportunities (a review). Renew Sustain Energy Rev 31:221–257.  https://doi.org/10.1016/j.rser.2013.11.045CrossRefGoogle Scholar
  138. 138.
    Thomas D, Thomas B, Jesse Goellner RM (2013) Novel CO2 utilization concepts.  https://doi.org/10.1016/j.enconman.2007.12.029CrossRefGoogle Scholar
  139. 139.
    Thomas GA, Mcclure TGM (1991) Feasibility of cyclic CO2 injection for light-oil recovery. 179–184CrossRefGoogle Scholar
  140. 140.
    Torabi F, Qazvini Firouz A, Kavousi A, Asghari K (2012) Comparative evaluation of immiscible, near miscible and miscible CO2 huff-n-puff to enhance oil recovery from a single matrix-fracture system (experimental and simulation studies). Fuel 93:443–453.  https://doi.org/10.1016/j.fuel.2011.08.037CrossRefGoogle Scholar
  141. 141.
    Li JH, Bao R, Qin B, Jiang T (2013) Numerical simulation of foamy oil stability using natural gas huff and puff for ultra-deep heavy oil reservoir, vol 318.  https://doi.org/10.4028/www.scientific.net/AMM.318.405CrossRefGoogle Scholar
  142. 142.
    Li G, Li X (2011) Numerical simulation for gas production from hydrate accumulated in Shenhu area, South China sea, using huff and puff method. Huagong Xuebao/CIESC J 62:458–468Google Scholar
  143. 143.
    Gamadi TD, Sheng JJ, Soliman MY, Menouar H, Watson MC, Emadibaladehi H (2014)An experimental study of cyclic CO2 injection to improve shale oil recovery. In: SPE improved oil recovery symposium, pp 1–9.  https://doi.org/10.2118/169142-ms
  144. 144.
    Armstrong K, Styring P (2015) Assessing the potential of utilization and storage strategies for post-combustion CO2 emissions reduction. Front Energy Res 3:1–9.  https://doi.org/10.3389/fenrg.2015.00008CrossRefGoogle Scholar
  145. 145.
    Zhang Y, Chan JYG (2010) Sustainable chemistry: imidazolium salts in biomass conversion and CO2 fixation. Energy Environ Sci 3:408–417.  https://doi.org/10.1039/B914206ACrossRefGoogle Scholar
  146. 146.
    Satthawong R, Koizumi N, Song C, Prasassarakich P (2015) Light olefin synthesis from CO2 hydrogenation over K-promoted Fe–Co bimetallic catalysts. Catal Today 251:34–40.  https://doi.org/10.1016/j.cattod.2015.01.011CrossRefGoogle Scholar
  147. 147.
    Aresta M, Dibenedetto A, Angelini A (2013) The changing paradigm in CO2 utilization. J CO2 Util 3–4:65–73.  https://doi.org/10.1016/j.jcou.2013.08.001CrossRefGoogle Scholar
  148. 148.
    Benemann JR (1997) CO2 mitigation with microalgae systems. Energy Convers Manag 38:S475–S479.  https://doi.org/10.1016/S0196-8904(96)00313-5CrossRefGoogle Scholar
  149. 149.
    Wilson MHH, Groppo J, Placido A, Graham S, Morton SA, Santillan-Jimenez E, et al (2014) CO2 recycling using microalgae for the production of fuels. Appl Petrochem Res 4(1):41–43.  https://doi.org/10.1007/s13203-014-0052-3CrossRefGoogle Scholar
  150. 150.
    Wang B, Li Y, Wu N, Lan CQ (2008) CO2 bio-mitigation using microalgae. Appl Microbiol Biotechnol 79:707–718.  https://doi.org/10.1007/s00253-008-1518-yCrossRefGoogle Scholar
  151. 151.
    Song C (2002) CO2 Conversion and utilization: an overview. CO2 Convers Util 809:1–2.  https://doi.org/10.1021/bk-2002-0809.ch001Google Scholar
  152. 152.
    Dilmore R, Lu P, Allen D, Soong Y, Hedges S, Fu JK et al (2008) Sequestration of CO2 in mixtures of bauxite residue and saline wastewater. Energy Fuels 22:343–353.  https://doi.org/10.1021/ef7003943CrossRefGoogle Scholar
  153. 153.
    Power G, Gräfe M, Klauber C (2011) Bauxite residue issues: I. Current management, disposal and storage practices. Hydrometallurgy 108:33–45.  https://doi.org/10.1016/j.hydromet.2011.02.006CrossRefGoogle Scholar
  154. 154.
    Descoins C, Mathlouthi M, Le Moual M, Hennequin J (2006) Carbonation monitoring of beverage in a laboratory scale unit with on-line measurement of dissolved CO2. Food Chem 95:541–553.  https://doi.org/10.1016/j.foodchem.2004.11.031CrossRefGoogle Scholar
  155. 155.
    Oelkers EH, Gislason SR, Matter J (2008) Mineral carbonation of CO2. Elements 4:333–337.  https://doi.org/10.2113/gselements.4.5.333CrossRefGoogle Scholar
  156. 156.
    North M, Pasquale R, Young C (2010) Synthesis of cyclic carbonates from epoxides and CO2. Green Chem 12:1514.  https://doi.org/10.1039/c0gc00065eCrossRefGoogle Scholar
  157. 157.
    Ma J, Sun N, Zhang X, Zhao N, Xiao F, Wei W et al (2009) A short review of catalysis for CO2 conversion. Catal Today 148:221–231.  https://doi.org/10.1016/j.cattod.2009.08.015CrossRefGoogle Scholar
  158. 158.
    Chen Y, Brown PH, Hu K, Black RM, Prior RL, Ou B, et al (2011) Supercritical CO2 decaffeination of unroasted coffee beans produces melanoidins with distinct NF-κB inhibitory activity. J Food Sci 76.  https://doi.org/10.1111/j.1750-3841.2011.02304.xCrossRefGoogle Scholar
  159. 159.
    Franca AS (2016) Coffee: decaffeination. Encycl Food Health 232–236. http://dx.doi.org/10.1016/B978-0-12-384947-2.00183-5
  160. 160.
    Zhan BJ, Xuan DX, Poon CS, Shi CJ (2016) Effect of curing parameters on CO2 curing of concrete blocks containing recycled aggregates. Cem Concr Compos 71:122–130.  https://doi.org/10.1016/j.cemconcomp.2016.05.002CrossRefGoogle Scholar
  161. 161.
    Zhan B, Poon C, Shi C (2013) CO2 curing for improving the properties of concrete blocks containing recycled aggregates. Cem Concr Compos 42:1–8.  https://doi.org/10.1016/j.cemconcomp.2013.04.013CrossRefGoogle Scholar
  162. 162.
    Zhang X, Han B (2007) Cleaning using CO2-based solvents. Clean Soil, Air, Water 35:223–229.  https://doi.org/10.1002/clen.200700007CrossRefGoogle Scholar
  163. 163.
    Zuo-tang W, Guo-xiong W, Rudolph V, Diniz da Costa JC, Pei-ming H, Lin X (2009) Simulation of CO2-geosequestration enhanced coal bed methane recovery with a deformation-flow coupled model. Proc Earth Planet Sci 1:81–89.  https://doi.org/10.1016/j.proeps.2009.09.015CrossRefGoogle Scholar
  164. 164.
    Ozdemir E (2009) Modeling of coal bed methane (CBM) production and CO2 sequestration in coal seams. Int J Coal Geol 77:145–152.  https://doi.org/10.1016/j.coal.2008.09.003CrossRefGoogle Scholar
  165. 165.
    Pruess K (2006) Enhanced geothermal systems (EGS) using CO2 as working fluid-a novel approach for generating renewable energy with simultaneous sequestration of carbon. Geothermics 35:351–367.  https://doi.org/10.1016/j.geothermics.2006.08.002CrossRefGoogle Scholar
  166. 166.
    Olasolo P, Juárez MC, Morales MP, Damico S, Liarte IA (2016) Enhanced geothermal systems (EGS): a review. Renew Sustain Energy Rev 56:133–144.  https://doi.org/10.1016/j.rser.2015.11.031CrossRefGoogle Scholar
  167. 167.
    Ferguson RC, Nichols C, Van Leeuwen T, Kuuskraa VA (2009) Storing CO2 with enhanced oil recovery. Energy Proc 1:1989–1996.  https://doi.org/10.1016/j.egypro.2009.01.259CrossRefGoogle Scholar
  168. 168.
    McGinnis RL, Hancock NT, Nowosielski-Slepowron MS, McGurgan GD (2013) Pilot demonstration of the NH3/CO2 forward osmosis desalination process on high salinity brines. Desalination 312:67–74.  https://doi.org/10.1016/j.desal.2012.11.032CrossRefGoogle Scholar
  169. 169.
    Al-Hallaj S, Parekh S, Farid MM, Selman JR (2006) Solar desalination with humidification-dehumidification cycle: review of economics. Desalination 195:169–186.  https://doi.org/10.1016/j.desal.2005.09.033CrossRefGoogle Scholar
  170. 170.
    El-Naas MH, Al-Marzouqi AH, Chaalal O (2010) A combined approach for the management of desalination reject brine and capture of CO2. Desalination 251:70–74.  https://doi.org/10.1016/j.desal.2009.09.141CrossRefGoogle Scholar
  171. 171.
    Guo TN, Fu ZM (2007) The fire situation and progress in fire safety science and technology in China. Fire Saf J 42:171–182.  https://doi.org/10.1016/j.firesaf.2006.10.005CrossRefGoogle Scholar
  172. 172.
    Tilman D, Reich P, Phillips H, Menton M, Patel A, Vos E et al (2000) Fire suppression and ecosystem carbon storage. Ecology 81:2680–2685CrossRefGoogle Scholar
  173. 173.
    Lenihan JM, Bachelet D, Neilson RP, Drapek R (2008) Simulated response of conterminous United States ecosystems to climate change at different levels of fire suppression, CO2 emission rate, and growth response to CO2. Glob Planet Change 64:16–25.  https://doi.org/10.1016/j.gloplacha.2008.01.006CrossRefGoogle Scholar
  174. 174.
    Ahmed J, Alam T (2012) An overview of food packaging: material selection and the future of packaging. In: Handbook of food process design, p 1237–1283.  https://doi.org/10.1002/9781444398274.ch41CrossRefGoogle Scholar
  175. 175.
    Han JH (2005) Innovations in food packaging. In: Innovations in food ackaging, p 517.  https://doi.org/10.1016/b978-012311632-1/50046-2CrossRefGoogle Scholar
  176. 176.
    Vaclavik V, Christian E (2008) Food preservation and processing. Essent Food Sci 425–446.  https://doi.org/10.1007/978-0-387-69940-0_17
  177. 177.
    Schaub T, Paciello RA (2011) A process for the synthesis of formic acid by CO2 hydrogenation: thermodynamic aspects and the role of CO. Angew Chemie Int Ed 50:7278–7282.  https://doi.org/10.1002/anie.201101292CrossRefGoogle Scholar
  178. 178.
    Kortlever R, Balemans C, Kwon Y, Koper MTM (2015) Electrochemical CO2 reduction to formic acid on a Pd-based formic acid oxidation catalyst. Catal Today 244:58–62.  https://doi.org/10.1016/j.cattod.2014.08.001CrossRefGoogle Scholar
  179. 179.
    Prior SA, Brett Runion G, Christopher Marble S, Rogers HH, Gilliam CH, Allen Torbert H (2011) A review of elevated atmospheric CO2 effects on plant growth and water relations: implications for horticulture. HortScience 46:158–162CrossRefGoogle Scholar
  180. 180.
    Christopher Marble S, Prior SA, Brett Runion G, Allen Torbert H, Gilliam CH, Fain GB (2011) The importance of determining carbon sequestration and greenhouse gas mitigation potential in ornamental horticulture. HortScience 46:240–244CrossRefGoogle Scholar
  181. 181.
    Huff CA, Sanford MS (2011) Cascade catalysis for the homogeneous hydrogenation of CO2 to Methanol. J Am Chem Soc 133:18122–18125.  https://doi.org/10.1021/ja208760jCrossRefGoogle Scholar
  182. 182.
    Zhang C, Jun KW, Kwak G, Lee YJ, Park HG (2016) Efficient utilization of carbon dioxide in a gas-to-methanol process composed of CO2/steam-mixed reforming and methanol synthesis. J CO2 Util 16:1–7.  https://doi.org/10.1016/j.jcou.2016.05.005CrossRefGoogle Scholar
  183. 183.
    Wang WH, Himeda Y, Muckerman JT, Manbeck GF, Fujita E (2015) CO2 hydrogenation to formate and methanol as an alternative to photo- and electrochemical CO2 reduction. Chem Rev 115:12936–12973.  https://doi.org/10.1021/acs.chemrev.5b00197CrossRefGoogle Scholar
  184. 184.
    Kothandaraman J, Goeppert A, Czaun M, Olah GA, Prakash GKS (2016) Conversion of CO2 from air into methanol using a polyamine and a homogeneous ruthenium catalyst. J Am Chem Soc 138:778–781.  https://doi.org/10.1021/jacs.5b12354CrossRefGoogle Scholar
  185. 185.
    Huijgen WJJ, Comans RNJ, Witkamp GJ (2007) Cost evaluation of CO2 sequestration by aqueous mineral carbonation. Energy Convers Manag 48:1923–1935.  https://doi.org/10.1016/j.enconman.2007.01.035CrossRefGoogle Scholar
  186. 186.
    Mayoral MC, Andrés JM, Gimeno MP (2013) Optimization of mineral carbonation process for CO2 sequestration by lime-rich coal ashes. Fuel 106:448–454.  https://doi.org/10.1016/j.fuel.2012.11.042CrossRefGoogle Scholar
  187. 187.
    Huisman GW, Gray D (2002) Towards novel processes for the fine-chemical and pharmaceutical industries. Curr Opin Biotechnol 13:352–358.  https://doi.org/10.1016/S0958-1669(02)00335-XCrossRefGoogle Scholar
  188. 188.
    Kellaway I (2001) Transport processes in pharmaceutical systems, vol 228.  https://doi.org/10.1016/s0378-5173(01)00823-7CrossRefGoogle Scholar
  189. 189.
    Nalawade SP, Picchioni F, Janssen LPBM (2006) Supercritical carbon dioxide as a green solvent for processing polymer melts: processing aspects and applications. Prog Polym Sci 31:19–43.  https://doi.org/10.1016/j.progpolymsci.2005.08.002CrossRefGoogle Scholar
  190. 190.
    Cooper AI (2000) Polymer synthesis and processing using supercritical carbon dioxide. J Mater Chem 10:207–234.  https://doi.org/10.1039/a906486iCrossRefGoogle Scholar
  191. 191.
    Pipitone G, Bolland O (2009) Power generation with CO2 capture: technology for CO2 purification. Int J Greenhouse Gas Control 3:528–534.  https://doi.org/10.1016/j.ijggc.2009.03.001CrossRefGoogle Scholar
  192. 192.
    Lombardi L (2003) Life cycle assessment comparison of technical solutions for CO2 emissions reduction in power generation. Energy Convers Manag 44:93–108.  https://doi.org/10.1016/S0196-8904(02)00049-3CrossRefGoogle Scholar
  193. 193.
    Beér JM (2007) High efficiency electric power generation: the environmental role. Prog Energy Combust Sci 33:107–134.  https://doi.org/10.1016/j.pecs.2006.08.002MathSciNetCrossRefGoogle Scholar
  194. 194.
    Oral J, Sikula J, Puchyr R, Hajny Z, Stehlik P, Bebar L (2005) Processing of waste from pulp and paper plant. J Clean Prod 13:509–515.  https://doi.org/10.1016/j.jclepro.2003.09.005CrossRefGoogle Scholar
  195. 195.
    Gavrilescu D (2008) Energy from biomass in pulp and paper mills. Environ Eng Manag J 7:537–546CrossRefGoogle Scholar
  196. 196.
    Kauf F (1999) Determination of the optimum high pressure for transcritical CO2-refrigeration cycles. Int J Therm Sci 38:325–330.  https://doi.org/10.1016/S1290-0729(99)80098-2CrossRefGoogle Scholar
  197. 197.
    Colasson S, Haberschill P (2010) Effect of refrigerant charge on global performances of a transcritical CO2 heat pump. Sustain. In: Refrigerant heat pump technology conference Stock, Sweden, pp 1–7.  https://doi.org/10.3969/j.issn.0258-2724.2010.05.005
  198. 198.
    Agrawal R Roberts M (2000) Dual mixed refrigerant cycle for gas liquefactionGoogle Scholar
  199. 199.
    Hénon FE, Camaiti M, Burke AL, Carbonell RG, DeSimone JM, Piacenti F (1999) Supercritical CO2 as a solvent for polymeric stone protective materials. J Supercrit Fluids 15:173–179.  https://doi.org/10.1016/s0896-8446(99)00005-4CrossRefGoogle Scholar
  200. 200.
    Lee SY, Seo S, Broda JC, Pal S, Santoro RJ (2000) An experimental estimation of mean reaction rate and flame structure during combustion instability in a lean premixed gas turbine combustor. Proc Combust Inst 28:775–782.  https://doi.org/10.1016/S0082-0784(00)80280-5CrossRefGoogle Scholar
  201. 201.
    Sun J, Liu X, Tong Y, Deng D (2014) A comparative study on welding temperature fields, residual stress distributions and deformations induced by laser beam welding and CO2 gas arc welding. Mater Des 63:519–530.  https://doi.org/10.1016/j.matdes.2014.06.057CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Medhat A. Nemitallah
    • 1
    Email author
  • Mohamed A. Habib
    • 2
  • Hassan M. Badr
    • 3
  1. 1.TIC in CCS and Mechanical Engineering DepartmentKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia
  2. 2.TIC in CCS and Mechanical Engineering DepartmentKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia
  3. 3.TIC in CCS and Mechanical Engineering DepartmentKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia

Personalised recommendations