Advertisement

Introduction

  • Medhat A. NemitallahEmail author
  • Mohamed A. Habib
  • Hassan M. Badr
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

Greenhouse gas (GHG) anthropogenic emission in the atmosphere has been the ultimate cause of the current climatic change. Among the main sources of anthropogenic greenhouse gas emissions, burning of fossil fuels has been identified as the main concern in the current century. As reported by the International Energy Agency (IEA), the global energy consumption based on fossil fuel amounts to about 80% of the total global energy demand. This resulted in the emission of 32.3 Gt of CO2 to the atmosphere in the year 2014. Recent findings indicated that about 40% of the global CO2 emission is a direct result of electricity generation, with more than 30% coming from fossil fuels. Several routes for lowering CO2 emissions can be applied including increasing of plant efficiency (provides a reduction of CO2 emission by 2–3% for increasing plant efficiency by 1%), decreasing of carbon content in the fuel by utilizing less carbon fuels, reducing unnecessary fuel consumption, and employing carbon capture and storage technologies.

References

  1. 1.
    Nemitallah MA, Ben-Mansour R, Habib MA, Ahmed WH, Toor IH, Gasem ZM, Badr HM (2015) Solid particle erosion downstream of an orifice. ASME J Fluids Eng 137(021302):1–11Google Scholar
  2. 2.
    Habib MA, Tahir F, Nemitallah MA, Ahmed WH, Badr HM (2015) Experimental and numerical analysis of oxy-fuel combustion in a porous plate reactor. Int J Energy Res 39:1229–1240CrossRefGoogle Scholar
  3. 3.
    Habib MA, Nemitallah MA, Sharqawy MH, Perveez A, Guhlam I, Yaqub M (2015) Experimental analysis of oxygen-methane combustion inside a gas turbine reactor under various operating conditions. Energy 86:105–114CrossRefGoogle Scholar
  4. 4.
    Binash IA, Habib MA, Nemitallah MA, Jamal Aqil (2015) Investigation of liquid ethanol evaporation and combustion in air and oxygen environments inside a 25-kW vertical reactor. Proc Inst Mech Eng Part A J Power Energy 229(6):647–661CrossRefGoogle Scholar
  5. 5.
    Nemitallah MA, Habib MA, Ghoniem AF (2014) Design of an ion transport membrane reactor for gas turbine combustion application. J Membr Sci 450:60–71CrossRefGoogle Scholar
  6. 6.
    Habib MA, Nemitallah MA, El-Nakla M (2014) Current status of CHF predictions using CFD modeling technique and review of other techniques especially for non-uniform axial and circumferential heating profiles. Ann Nucl Energy 70:188–207CrossRefGoogle Scholar
  7. 7.
    Ben-Mansour R, Habib MA, Nemitallah MA, Rajhi M, Suara KA (2014) Characteristics of oxy-fuel air fuel combustion in an industrial water tube boiler. J Heat Transf Eng 35:1394–1404CrossRefGoogle Scholar
  8. 8.
    Rajhi MA, Ben-Mansour R, Habib MA, Nemitallah MA, Andersson K (2014) Evaluation of gas radiation models in CFD modeling of oxy-combustion. Energy Convers Manag 81:83–97CrossRefGoogle Scholar
  9. 9.
    Habib MA, Mokhiemer EM, Sofihullahi Y, Sanusi Y, Nemitallah MA (2014) Numerical investigations of combustion and emissions of syngas as compared to methane in a 200 MW Packaged Boiler. Energy Convers Manag 83:296–305CrossRefGoogle Scholar
  10. 10.
    Habib MA, Said SA, Khalifa A, Nemitallah MA, Ayinde T (2014) Experimental investigations of the flow maldistribution inside an air-cooled heat exchanger. Arab J Sci Eng 39:8187–8198CrossRefGoogle Scholar
  11. 11.
    UNFCCC. Adoption of the Paris Agreement. Report No. FCCC/CP/2015/L.9/Rev.1. http://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf (UNFCCC, 2015)
  12. 12.
    UNFCCC. United Nations Framework Convention on Climate Change. Report No. FCCC/INFORMAL/84. https://unfccc.int/resource/docs/convkp/conveng.pdf. (UNFCCC, 1992)
  13. 13.
    Knutti R, Rogelj J, Sedlácˇek J, Fischer EM (2016) A scientific critique of the two-degree climate change target. Nat Geosci 9:13–18CrossRefGoogle Scholar
  14. 14.
    Randalls S (2010) History of the 2 °C climate target. Wiley Interdiscip Rev Clim Change 1:598–605Google Scholar
  15. 15.
    Rogelj J, den Elzen M, Höhne N, Fransen T, Fekete H, Winkler H, Schaeffer R, Sha F, Riahi K, Meinshausen M (2016) Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature 534.  https://doi.org/10.1038/nature18307CrossRefGoogle Scholar
  16. 16.
    Collins M et al (2013) Stocker TF et al. (eds) In: Climate change 2013: the physical science basis. Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 1029–1136Google Scholar
  17. 17.
    Matthews HD, Caldeira K (2008) Stabilizing climate requires near-zero emissions. Geophys Res Lett 35:L04705CrossRefGoogle Scholar
  18. 18.
    Knutti R, Rogelj J (2015) The legacy of our CO2 emissions: a clash of scientific facts, politics and ethics. Clim Change 133:361–373CrossRefGoogle Scholar
  19. 19.
    IPCC (2014) Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate ChangeGoogle Scholar
  20. 20.
    Meinshausen M et al (2009) Greenhouse-gas emission targets for limiting global warming to 2°C. Nature 458:1158–1162CrossRefGoogle Scholar
  21. 21.
    Rogelj J et al (2016) Differences between carbon budget estimates unravelled. Nat Clim Change 6:245–252CrossRefGoogle Scholar
  22. 22.
    Friedlingstein P et al (2014) Persistent growth of CO2 emissions and implications for reaching climate targets. Nat Geosci 7:709–715CrossRefGoogle Scholar
  23. 23.
    Rogelj J, McCollum DL, Reisinger A, Meinshausen M, Riahi K (2013) Probabilistic cost estimates for climate change mitigation. Nature 493:79–83CrossRefGoogle Scholar
  24. 24.
    Luderer G et al (2013) Economic mitigation challenges: how further delay closes the door for achieving climate targets. Environ Res Lett 8:034033CrossRefGoogle Scholar
  25. 25.
    Allen MR, Frame DJ, Huntingford C, Jones CD, Lowe AJ, Meinshausen M, Meinshausen N (2009) Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature 458.  https://doi.org/10.1038/nature08019CrossRefGoogle Scholar
  26. 26.
    Rogelj J et al (2015) Energy system transformations for limiting end-of-century warming to below 1.5 °C. Nat Clim Change 5:519–527CrossRefGoogle Scholar
  27. 27.
    Clarke L et al (2014) In: Edenhofer O et al (eds) Climate change 2014: mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 413–510. Cambridge University Press, CambridgeGoogle Scholar
  28. 28.
    Rogelj J et al (2015) Zero emission targets as long-term global goals for climate protection. Environ Res Lett 10:105007CrossRefGoogle Scholar
  29. 29.
    International Energy Agency (IEA) (2016) World energy outlook 2016. Paris. http://www.worldenergyoutlook.org/publications/weo-2016/
  30. 30.
    Le Quere C et al (2016) Global carbon project 2016. Earth Syst Sci Data 8:605–649CrossRefGoogle Scholar
  31. 31.
    Waldman S (2016 Nov 14) Global carbon emissions have now been flat for 3 years. E&E News. http://www.eenews.net/climatewire/2016/11/14/stories/1060045682
  32. 32.
    Enerdata, Global energy statistical yearbook 2016—coal and lignite production. https://yearbook.enerdata.net/coal-and-lignite-production.html, viewed 21 Mar 2017
  33. 33.
    Neslen A (2016 Sept 23) Dutch parliament votes to close down country’s coal industry. The Guardian (UK). https://www.theguardian.com/environment/2016/sep/23/dutch-parliament-votes-toclose-down-countrys-coal-industry
  34. 34.
    International Energy Agency (IEA) (2016) World energy statistics and balances, 2016 edition. OECD/IEA, ParisGoogle Scholar
  35. 35.
    IEA (2016) Medium-term renewable energy market report 2016. Paris. https://www.iea.org/newsroom/news/2016/october/mediumterm-renewable-energy-market-eport-2016.html
  36. 36.
    Coady David et al (2015) How large are global energy subsidies?. IMF, Washington, DCCrossRefGoogle Scholar
  37. 37.
    Renewables 2017, Global status reportGoogle Scholar
  38. 38.
  39. 39.
    International Renewable Energy Agency (IRENA), Innovation Outlook, Advanced Biofuels (Abu Dhabi: 2016). http://www.irena.org/DocumentDownloads/Publications/IRENA_Innovation_Outlook_Advanced_Biofuels_2016_summary.pdf
  40. 40.
    IEA (2016) Medium-term renewable energy market report 2016. Paris. https://www.iea.org/newsroom/news/2016/october/medium-term-renewable-energy-market-report-2016.html
  41. 41.
    European Commission (2017) Final report from special group on advanced biofuels: building up the future. Brussels (forthcoming)Google Scholar
  42. 42.
    IEA (2016) Renewables information. Paris. http://wds.iea.org/wds/pdf/Ren_documentation.pdf
  43. 43.
    World Energy Outlook (2016) Projections for 2015 and 2016 are from a linear extrapolation based on data for 2010–14 from IEA. Paris. http://www.worldenergyoutlook.org/publications/weo-2016/
  44. 44.
    UK Department for Business, Energy and Industrial Strategy, National Statistics, Energy Trends Section 6: Renewables, Table 6.1, updated 3 Apr 2017. https://www.gov.uk/government/statistics/energy-trends-section-6-renewables
  45. 45.
    US data (corrected for difference between net and gross electricity generation) from US Energy Information Administration (EIA), Electric Power Monthly, 24 March 2017. http://www.eia.gov/electricity/monthly/epm_table_grapher.cfm?t=epmt_1_01_a
  46. 46.
    Licht FO (2017) Fuel ethanol: world production by country. Where provisional data have been replaced in the source, these have been usedGoogle Scholar
  47. 47.
    International Energy Agency (IEA) (2017 Feb) Geothermal, annual report 2015. Taupo, New Zealand. http://iea-gia.org/wp-content/uploads/2017/02/2015-IEA-Geothermal-Annual-Report.pdf
  48. 48.
    IHA, op. cit. note 1, and on IHA, Hydropower Status Report 2016 (London: May 2016). http://www.hydropower.org
  49. 49.
    International Hydropower Association (IHA) (2017 Apr) Key trends in hydropower. LondonGoogle Scholar
  50. 50.
    GE (2016) Powering the digital transformation of electricity Boston. https://www.ge.com/digital/sites/default/files/Power%20Digital%20Solutions%20Product%20Catalog.pdf
  51. 51.
    International Renewable Energy Agency (IRENA) (2017 Apr) Renewable capacity statistics 2017. Abu Dhabi. http://www.irena.org/DocumentDownloads/Publications/IRENA_RE_Capacity_Statistics_2017.pdf
  52. 52.
    European Commission (EC), Ocean energy forum, Ocean energy strategic roadmap—Building ocean energy for Europe. Brussels (Nov 2016), https://webgate.ec.europa.eu/maritimeforum/en/node/3962
  53. 53.
    International Energy Agency (IEA) Photovoltaic Power Systems Programme (PVPS) (Apr 2017) Snapshot of global photovoltaic markets 2016. Paris, p. 4Google Scholar
  54. 54.
    IEA PVPS (Apr 2016) Snapshot of global photovoltaic markets 2015, ParisGoogle Scholar
  55. 55.
    IEA PVPS (2016) Trends in photovoltaic applications, 2016: survey report of selected IEA countries between 1992 and 2015, ParisGoogle Scholar
  56. 56.
    GTM Research and SEIA, op. cit. note 26, p. 15Google Scholar
  57. 57.
    Innovations in solar plant assembly drive costs towards $1 per watt in 2017”, PV Insider, 12 Oct 2016. http://analysis.pv-insider.com/innovations-solar-plant-assembly-drive-costs-towards-1-watt-2017
  58. 58.
    GTM Research, personal communication with REN21, April 2017; historic lows from Mints, op. cit. note 12Google Scholar
  59. 59.
    Global Wind Energy Council (GWEC) (2017 Apr) Global wind report—annual market update 2016. BrusselsGoogle Scholar
  60. 60.
    GWEC, op. cit. note 1; FTI Intelligence, “Vestas returns to no. 1 spot in global wind turbine supplier ranking in 2016”, press release (London: 20 Feb 2017)Google Scholar
  61. 61.
    Shruti Shukla, GWEC, personal communication with Renewable Energy Policy Network for the 21st century (REN21), 13 Apr 2017Google Scholar
  62. 62.
    Lily Riahi et al (2015) District energy in cities. Unlocking the potential for renewable energy and energy efficiency. UNEP, ParisGoogle Scholar
  63. 63.
    Gerdes J (2012, Oct 24) Copenhagen’s seawater cooling delivers energy and carbon savings. ForbesGoogle Scholar
  64. 64.
    Commonwealth of Australia, op. cit. note 31Google Scholar
  65. 65.
    Babu P, Linga P, Kumar R, Englezos P (2015) A review of the hydrate-based gas separation (HBGS) process for carbon dioxide pre-combustion capture. Energy 85:261–279CrossRefGoogle Scholar
  66. 66.
    International Energy Agency (2011) World energy outlookGoogle Scholar
  67. 67.
    Habib MA, Nemitallah MA, Ben-Mansour R (2012) Recent development in oxy-combustion technology and its applications to gas turbine combustors and ITM reactors. Energy Fuels 27:2–19CrossRefGoogle Scholar
  68. 68.
    Kenarsari SD, Yang D, Jiang G, Zhang S, Wang J, Russell AG et al (2013) Review of recent advances in carbon dioxide separation and capture. RSC Adv 3(45):22739–22773CrossRefGoogle Scholar
  69. 69.
    Mondal MK, Balsora HK, Varshney P (2012) Progress and trends in CO2 capture/separation technologies: a review. Energy 46(1):431–441CrossRefGoogle Scholar
  70. 70.
    Padurean A, Cormos CC, Agachi PS (2012) Pre-combustion carbon dioxide capture by gas-liquid absorption for integrated gasification combined cycle plant. Int J Greenh Gas Control 7:1–11CrossRefGoogle Scholar
  71. 71.
    Hasib-ur-Rahman M, Siaj M, Larachi F (2010) Ionic liquids for CO2 capture-development and progress. Chem Eng Process 49:313–322CrossRefGoogle Scholar
  72. 72.
    Wang Q, Luo J, Zhong Z, Borgna A (2011) CO2 capture by solid adsorbents and their applicaions: current status and new trends. Energy Environ Sci 4:42–55CrossRefGoogle Scholar
  73. 73.
    Mart´ın CF, Stӧckel E, Clowes R, Adams DJ, Cooper AI, Pis JJ, Rubiera F, Pevida C (2011) Hypercrosslinked organic polymer networks as potential adsorbents for pre-combustion CO2 capture. J Mater Chem 21:5475–5483Google Scholar
  74. 74.
    Long JR, Yaghi OM (2009) The pervasive chemistry of metal–organic frameworks. Chem Soc Rev 38:1213–1214CrossRefGoogle Scholar
  75. 75.
    Furukawa H, Ko N, Go YB, Aratani N, Choi SB, Choi E, Yazaydin AO, Snurr RQ, O’Keeffe M, Kim J (2010) Ultrahigh porosity in metal-organic frameworks. Science 329:424–428CrossRefGoogle Scholar
  76. 76.
    Sculley J, Yuan D, Zhou HC (2011) The current status of hydrogen storage in metal–organic frameworks—updated. Energy Environ Sci 4:2721–2735CrossRefGoogle Scholar
  77. 77.
    Li JR, Ma Y, McCarthy MC, Sculley J, Yu J, Jeong HK, Balbuena PB, Zhou HC (2011) Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks. Coord Chem Rev 255:1791–1823CrossRefGoogle Scholar
  78. 78.
    Kovvali AS, Sirkar K (2001) Dendrimer liquid membranes: CO2 separation from gas mixtures. Ind Eng Chem Res 40:2502–2511CrossRefGoogle Scholar
  79. 79.
    Brunetti A, Scura F, Barbieri G, Drioli E (2010) Membrane technologies for CO2 separation. J Membr Sci 359:115–125CrossRefGoogle Scholar
  80. 80.
    Linga P, Kumar R, Englezos P (2007) Gas hydrate formation from hydrogen/carbon dioxide and nitrogen/carbon dioxide gas mixtures. Chem Eng Sci 62(16):4268–4276CrossRefGoogle Scholar
  81. 81.
    Xu CG, Li XS (2014) Research progress of hydrate-based CO2 separation and capture from gas mixtures. RSC Adv 4(35):18301–18316CrossRefGoogle Scholar
  82. 82.
    Meisen A, Jim Lim C (2006) Kinetics of carbon dioxide absorption and desorption in aqueous alkanolamine solutions using a novel hemispherical contactor-II: experimental results and parameter estimation. Chem Eng Sci 61(19):6590–6603CrossRefGoogle Scholar
  83. 83.
    Jamal A, Meisen A, Jim Lim C (2006) Kinetics of carbon dioxide absorption and desorption in aqueous alkanolamine solutions using a novel hemispherical contactor-I. Experimental apparatus and mathematical modeling. Chem Eng Sci 61(19):6571–6589CrossRefGoogle Scholar
  84. 84.
    Kohl A, Nielsen R (1997) Gas purification, 5th edn. Gulf Publishing CompanyGoogle Scholar
  85. 85.
    Singh D, Croiset E, Douglas P, Douglas M (2003) Techno-economic study of CO2 capture from an existing coal-fired power plant: MEA scrubbing vs. O2/CO2 recycle combustion. Energy Convers Manag 44(19):3073–3091Google Scholar
  86. 86.
    Folger P (2013) Carbon capture: a technology assessmentGoogle Scholar
  87. 87.
    Hermosillalara G, Momen G, Marty P, Leneindre B, Hassouni K (2007) Hydrogen storage by adsorption on activated carbon: investigation of the thermal effects during the charging process. Int J Hydrog Energy 32:1542–1553CrossRefGoogle Scholar
  88. 88.
    Richard MA, Bénard P, Chahine R (2009) Gas adsorption process in activated carbon over a wide temperature range above the critical point. Part 1: Modified Dubinin-Astakhov model. Adsorption 15:43–51CrossRefGoogle Scholar
  89. 89.
    Xiao J, Tong L, Deng C, Bénard P, Chahine R (2010) Simulation of heat and mass transfer in activated carbon tank for hydrogen storage. Int J Hydrog Energy 35:8106–8116CrossRefGoogle Scholar
  90. 90.
    Ye F, Xiao J, Hu B, Benard P, Chahine R (2012) Implementation for model of adsoptive hydrogen storage using UDF in fluent. Phys Procedia 24:793–800CrossRefGoogle Scholar
  91. 91.
    Xiao J, Hu M, Bénard P, Chahine R (2013) Simulation of hydrogen storage tank packed with metal-organic framework. Int J Hydrog Energy 38(29):13000–13010CrossRefGoogle Scholar
  92. 92.
    Dyer P, Richards R, Russek S, Taylor D (2000) Ion transport membrane technology for oxygen separation and syngas production. Solid State Ion 134:21CrossRefGoogle Scholar
  93. 93.
    Lin Y (2001) Microporous and dense inorganic membranes: current status and prospective. Sep Purif Technol 25:39–55CrossRefGoogle Scholar
  94. 94.
    Zeng Y, Lin Y, Swartz S (1998) Perovskite type ceramic membranes: synthesis, oxygen permeation and membrane reactor performance for oxidative coupling of methane. J Membr Sci 150:87–98CrossRefGoogle Scholar
  95. 95.
    Balachandran U, Kleefisch M, Kobylinski T, Morissette S, Pei S (1997) Oxygen ion-conducting dense ceramic membranes. US Patent 5:639,437Google Scholar
  96. 96.
    Schwartz M, White J, Sammels A (2000) Solid state oxygen anion and electron mediating membrane and catalytic membrane reactors containing them. US Patent 6:033,632Google Scholar
  97. 97.
    Chen C, Prasad R, Gottzmann C (1999) Solid electrolyte membrane with porous catalytically-enhancing constituents (Assigned to Praxair Technology). US Patent 5:938,822Google Scholar
  98. 98.
    Kim J, Lin Y (2000) Synthesis and oxygen permeation properties of thin YSZ/Pd composite membranes. AIChE J 46:1521CrossRefGoogle Scholar
  99. 99.
    Descamps C (2004) CO2 capture study by physical absorption in power production systems based on Integrated Gasification Combined Cycle. Ph.D. thesis, Ecole des Mines, ParisGoogle Scholar
  100. 100.
    Kanniche M, Bonnivard R, Jaud P, Marcos J, Amann J, Bouallou C (2010) Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture. Appl Therm Eng 30:53–62CrossRefGoogle Scholar
  101. 101.
    IEA Greenhouse Gas R&D Programme (IEAGHG) report. Emissions of substances other than CO2 from power plants with CCS. March 2012 (03)Google Scholar
  102. 102.
    Thomas GA, Mcclure TGM (1991) Feasibility of cyclic CO2 injection for light-oil recovery, 179–84CrossRefGoogle Scholar
  103. 103.
    Torabi F, Qazvini Firouz A, Kavousi A, Asghari K (2012) Comparative evaluation of immiscible, near miscible and miscible CO2 huff-n-puff to enhance oil recovery from a single matrix-fracture system (experimental and simulation studies). Fuel 93:443–453.  https://doi.org/10.1016/j.fuel.2011.08.037CrossRefGoogle Scholar
  104. 104.
    Li JH, Bao R, Qin B, Jiang T (2013) Numerical simulation of foamy oil stability using natural gas huff and puff for ultra-deep heavy oil reservoir, vol 318. doi:10.4028/www.scientific.net/AMM.318.405CrossRefGoogle Scholar
  105. 105.
    Li G, Li X (2011) Numerical simulation for gas production from hydrate accumulated in Shenhu Area, South China Sea, using huff and puff method. Huagong Xuebao/CIESC J 62:458–468Google Scholar
  106. 106.
    Gamadi TD, Sheng JJ, Soliman MY, Menouar H, Watson MC, Emadibaladehi H (2014) An experimental study of cyclic CO2 injection to improve shale oil recovery. SPE Improv Oil Recover Symp, pp 1–9.  https://doi.org/10.2118/169142-ms
  107. 107.
    Marchetti C (1977) On geoengineering and the CO2 problem. Clim Change 1:59–68CrossRefGoogle Scholar
  108. 108.
    Baes CF, Beall SE, Lee DW, Marland G (1980) The collection, disposal and storage of carbon dioxide. In: Bach W, Pankrath J, William J (eds) Interaction of energy and climate. D. Reidel Publishing Co, pp 495–519Google Scholar
  109. 109.
    Koide H, Yamazaki K (2001) Subsurface CO2 disposal with enhanced gas recovery and biogeochemical carbon recycling. Environ Geosci 8(3):218–224CrossRefGoogle Scholar
  110. 110.
    Gunter WD, Bachu S, Benson S (2004) The role of hydrogeological and geochemical trapping in sedimentary basins for secure geological storage for carbon dioxide. Geological Society, London, Special Publications, 233, pp 129–145, 1 January 2004CrossRefGoogle Scholar
  111. 111.
    IPCC (Intergovernmental Panel on Climate Change) (2005) Special report on carbon capture and storage. Cambridge University Press, CambridgeGoogle Scholar
  112. 112.
    Robinson M, Leonenko Y (2017) Analytical approach for modeling of multi well CO2 injection. Energy Procedia 114:3406–3416CrossRefGoogle Scholar
  113. 113.
    IPCC (2011) Special report on renewable energy sources and climate change mitigation, Working Group III Mitigation of Climate Change, Potsdam Institute for Climate Impact Research (PIK), Potsdam, Germany. http://srren.ipcc‐wg3.de/reportGoogle Scholar
  114. 114.
    Karlsson H, Byström L, Biorecro AB (2010) Global status of BECCS Projects. Global CCS Institute, Stockholm SwedenGoogle Scholar
  115. 115.
    Stanger R, Wall T, Spörl R, Paneru M, Grathwohl S, Weidmann M, Scheffknecht G, McDonald D, Myöhänen K, Ritvanen J (2015) Oxyfuel combustion for CO2 capture in power plants. Int J Greenh Gas Control 40:55–125CrossRefGoogle Scholar
  116. 116.
    Chen W-Y (2012) Handbook of climate change mitigation. Springer, BerlinCrossRefGoogle Scholar
  117. 117.
    Burdyny T, Struchtrup H (2010) Hybrid membrane/cryogenic separation of oxygen from air for use in the oxy-fuel process. Energy 35:1884–1897CrossRefGoogle Scholar
  118. 118.
    Banaszkiewicz T, Chorowski M, Gizicki W (2014) Comparative analysis of oxygen production for oxy-combustion application. Energy Procedia 51:127–134CrossRefGoogle Scholar
  119. 119.
    Simpson AP, Simon A (2007) Second law comparison of oxy-fuel combustion and post-combustion carbon dioxide separation. Energy Convers Manag 48:3034–3045CrossRefGoogle Scholar
  120. 120.
    Kakaras E, Koumanakos A, Doukelis A, Giannakopoulos D, Vorrias I (2007) Oxyfuel boiler design in a lignite-fired power plant. Fuel 86:2144–2150CrossRefGoogle Scholar
  121. 121.
    Athayde DD, Souza DF, Silva AM, Vasconcelos D, Nunes EH, da Costa JCD, Vasconcelos WL (2016) Review of perovskite ceramic synthesis and membrane preparation methods. Ceram Int 42:6555–6571CrossRefGoogle Scholar
  122. 122.
    Murali RS, Sankarshana T, Sridhar S (2013) Air separation by polymer-based membrane technology. Sep Purif Rev 42:130–186CrossRefGoogle Scholar
  123. 123.
    Scheffknecht G, Al-Makhadmeh L, Schnell U, Maier J (2011) Oxy-fuel coal combustion—a review of the current state-of-the-art. Int J Greenh Gas Control 5:16–35CrossRefGoogle Scholar
  124. 124.
    Habib MA, Nemitallah MA (2015) Design of an ion transport membrane reactor for application in fire tube boilers. Energy 81:787–801CrossRefGoogle Scholar
  125. 125.
    Granados DA, Chejne F, Mejía JM (2015) Oxy-fuel combustion as an alternative for increasing lime production in rotary kilns. Appl Energy 158:107–117CrossRefGoogle Scholar
  126. 126.
    Aneke M, Wang M (2015) Process analysis of pressurized oxy-coal power cycle for carbon capture application integrated with liquid air power generation and binary cycle engines. Appl Energy 154:556–566CrossRefGoogle Scholar
  127. 127.
    Nemitallah MA, Habib MA, Ben Mansour R (2012) Investigations of oxy-fuel combustion and oxygen permeation in an ITM reactor using a two-step oxy-combustion reaction kinetics model. J Membr Sci 432:1–12CrossRefGoogle Scholar
  128. 128.
    Ben-Mansour R, Habib MA, Badr HM, Nemitallah M (2012) Characteristics of oxyfuel combustion in an oxygen transport reactor. Energy Fuels 26:4599–4606CrossRefGoogle Scholar
  129. 129.
    Ben Mansour R, Nemitallah MA, Habib MA (2013) Numerical Investigations of oxygen permeation and methane-oxycombustion in a stagnation flow ion transport membrane reactor. Energy 1:1–11CrossRefGoogle Scholar
  130. 130.
    Akin F, Jerry Y, Lin YS (2004) Oxygen permeation through oxygen ionic or mixed-conducting ceramic membranes with chemical reactions. J Membr Sci 231:133–146CrossRefGoogle Scholar
  131. 131.
    Habib MA, Nemitallah MA, Ben-Mansour R (2013) Recent development in oxy-combustion technology and its applications to gas turbine combustors and ITM reactors. Energy Fuels 27:2–19CrossRefGoogle Scholar
  132. 132.
    Zhang K, Sunarso J, Shao Z, Zhou W, Sun C, Wang S, Liu S (2011) Research progress and materials selection guidelines on mixed conducting perovskite type ceramic membranes for oxygen production. RSC Adv 1:1661–1676CrossRefGoogle Scholar
  133. 133.
    Mancini ND, Mitsos A (2011) Ion transport membrane reactors for oxy-combustion. Part II: Analysis and comparison of alternatives. Energy 36:4721–4739CrossRefGoogle Scholar
  134. 134.
    IEA (2016) 20 years of carbon capture and storage. [Online]. Available: https://www.iea.org/publications/freepublications/publication/20YearsofCarbonCaptureandStorage_WEB.pdf
  135. 135.
  136. 136.
    Li H, Yan J, Yan J, Anheden M (2009) Impurity impacts on the purification process in oxy-fuel combustion-based CO2 capture and storage system. Appl Energy 86(2):202–213CrossRefGoogle Scholar
  137. 137.
    Heil P, Torporov D, Stadler H, Tschunko S, Forster M, Kneer R (2009) Development of an oxycoal swirl burner operating at low O2 concentrations. Fuel 88:1269–1274CrossRefGoogle Scholar
  138. 138.
    Kvamsdal H, Jordal K, Bolland O (2007) A quantitative comparison of gas turbine cycles with CO2 capture. Energy 32:10–24CrossRefGoogle Scholar
  139. 139.
    Bolland O, Mathieu P (1998) Comparison of two CO2 removal options in combined cycle power plants. Energy Convers Manag 39:1653–1663CrossRefGoogle Scholar
  140. 140.
    Dillon D, Panesar R, Wall R, Allam R, White V, Gibbins J et al, Oxy-combustion processes for CO2 capture from advanced supercritical PF and NGCC power plant. In: Proceedings of the seventh international conference on greenhouse gas control technologies-GHGT7 2004; Vancouver, CanadaGoogle Scholar
  141. 141.
    Staicovici M (2002) Further research zero CO2 emission power production: the coolenerg process. Energy 27:831–844CrossRefGoogle Scholar
  142. 142.
    Yantovski E (1996) Stack downward zero emission fuel-fired power plants concept. Energy Convers Manag 37:867–877CrossRefGoogle Scholar
  143. 143.
    Mathieu P, Nihart R (1999) Sensitivity analysis of the MATIANT cycle. Energy Convers Manag 40:1687–1700CrossRefGoogle Scholar
  144. 144.
    Liu C, Chen G, Sipocz N, Assadi M, Bai X (2012) Characteristics of oxy-fuel combustion in gas turbines. Appl Energy 89:387–394CrossRefGoogle Scholar
  145. 145.
    Kutne P, Kapadia B, Meier W, Aigner M (2010) Experimental analysis of the combustion behavior of oxyfuel flames in a gas turbine model combustor. In: Proceedings of the combustion institute.  https://doi.org/10.1016/j.proci.2010.07.008CrossRefGoogle Scholar
  146. 146.
    Williams T, Shaddix C, Schefer R (2008) Effect of syngas composition and CO2-diluted oxygen on performance of a premixed swirl stabilized combustor. Combust Sci Technol 180:64–88CrossRefGoogle Scholar
  147. 147.
    Ditaranto M, Hals (2006) Combustion instabilities in sudden expansion oxy–fuel flames. J Combust Flame 146:493–512CrossRefGoogle Scholar
  148. 148.
    Andersson K, Johnsson F (2007) Flame and radiation characteristics of gas-fired O2/CO2 combustion. Fuel 86:656–668CrossRefGoogle Scholar
  149. 149.
    Nemitallah MA, Habib MA (2013) Experimental and numerical investigations of an atmospheric diffusion oxy-combustion flame in a gas turbine model combustor. Appl Energy 111:401–415CrossRefGoogle Scholar
  150. 150.
    Wall T (2007) Combustion processes for carbon capture. Proc Combust Inst 31:31–47CrossRefGoogle Scholar
  151. 151.
    Nemitallah MA (2016) A study of methane oxy-combustion characteristics inside a modified design button-cell membrane reactor utilizing a modified oxygen permeation model for reacting flows. J Nat Gas Sci Eng 28:61–73CrossRefGoogle Scholar
  152. 152.
    Nemitallah MA, Habib MA, Mezghani K (2015) Experimental and numerical study of oxygen separation and oxy-combustion characteristics inside a button-cell LNO-ITM reactor. Energy 84:600–611CrossRefGoogle Scholar
  153. 153.
    Habib MA, Salaudeen SA, Nemitallah MA, Ben-Mansour R, Mokheimer EMA (2016) Numerical investigation of syngas oxy-combustion inside a LSCF-6428 oxygen transport membrane reactor. Energy 96:654–665CrossRefGoogle Scholar
  154. 154.
  155. 155.
    Williams TC, Shaddix CR, Schefer RW (2007) Effect of Syngas Composition and CO2-Diluted Oxygen on Performance of a Premixed Swirl-Stabilized Combustor. Combust Sci Technol 180:64–88CrossRefGoogle Scholar
  156. 156.
    Wicksall DM, Agrawal AK, Schefer RW, Keller JO (2005) The interaction of flame and flow field in a lean premixed swirl-stabilized combustor operated on H2/CH4/air. Proc Combust Inst 30:2875–2883CrossRefGoogle Scholar
  157. 157.
    Xie Y, Wang J, Zhang M, Gong J, Jin W, Huang Z (2013) Experimental and numerical study on laminar flame characteristics of methane oxy-fuel mixtures highly diluted with CO2. Energy Fuels 27:6231–6237CrossRefGoogle Scholar
  158. 158.
    Joo PH, Charest MRJ, Groth CPT, Gülder ÖL (2013) Comparison of structures of laminar methane-oxygen and methane-air diffusion flames from atmospheric to 60 atm. Combust Flame 160:1990–1998CrossRefGoogle Scholar
  159. 159.
    Rashwan SS, Ibrahim AH, Abou-Arab TW, Nemitallah MA, Habib MA (2016) Experimental investigation of partially premixed methane-air and methane-oxygen flames stabilized over a perforated-plate burner. Appl Energy 169:126–137CrossRefGoogle Scholar
  160. 160.
    Ramadan IA, Ibrahim AH, Abou-Arab TW, Rashwan SS, Nemitallah MA, Habib MA (2016) Effects of oxidizer flexibility and bluff-body blockage ratio on flammability limits of diffusion flames. Appl Energy 178:19–28CrossRefGoogle Scholar
  161. 161.
    Rashwan SS, Ibrahim AH, Abou-arab TW (2015) Experimental investigation of oxy-fuel combustion of CNG flames stabilized over a perforated-plate burner. In: 18th international flame research foundation. Friesing, Munich, 1–11Google Scholar
  162. 162.
    Taamallah S, Vogiatzaki K, Alzahrani FM, Mokheimer EMA, Habib MA, Ghoniem AF (2015) Fuel flexibility, stability and emissions in premixed hydrogen-rich gas turbine combustion: technology, fundamentals, and numerical simulations. Appl Energy 154:1020–1047CrossRefGoogle Scholar
  163. 163.
    Kashir B, Tabejamaat S, Jalalatian N (2015) A numerical study on combustion characteristics of blended methane-hydrogen bluff-body stabilized swirl diffusion flames. Int J Hydrog Energy 40:6243–6258CrossRefGoogle Scholar
  164. 164.
    Yu B, Lee S, Lee CE (2015) Study of NOx emission characteristics in CH4/air non-premixed flames with exhaust gas recirculation. Energy 91:119–127CrossRefGoogle Scholar
  165. 165.
    Gao X, Duan F, Lim SC, Yip MS (2013) NOx formation in hydrogen–methane turbulent diffusion flame under the moderate or intense low-oxygen dilution conditions. Energy 59:559–569CrossRefGoogle Scholar
  166. 166.
    Li YH, Chen GB, Lin YC, Chao YC (2015) Effects of flue gas recirculation on the premixed oxy-methane flames in atmospheric condition. Energy 89:845–857CrossRefGoogle Scholar
  167. 167.
    Altay HM, Hudgins DE, Speth RL, Annaswamy AM, Ghoniem AF (2010) Mitigation of thermoacoustic instability utilizing steady air injection near the flame anchoring zone. Combust Flame 157:686–700CrossRefGoogle Scholar
  168. 168.
    Ghoniem AF, Park S, Wachsman A, Annaswamy A, Wee D, Altay HM (2005) Mechanism of combustion dynamics in a backward-facing step stabilized premixed flame. Proc Combust Inst 30:1783–1790CrossRefGoogle Scholar
  169. 169.
    Lee K, Kim H, Park P, Yang S, Ko Y (2013) CO2 radiation heat loss effects on NOx emissions and combustion instabilities in lean premixed flames. Fuel 106:682–689CrossRefGoogle Scholar
  170. 170.
    Yadav NP, Kushari A (2009) Visualization of recirculation in low aspect ratio dump combustor. J Flow Vis Image Process 16:127–136CrossRefGoogle Scholar
  171. 171.
    Li G, Gutmark EJ (2005) Effect of nozzle geometry on combustion flow field and combustion characteristics. Proc Combust Inst 30:2893–2901CrossRefGoogle Scholar
  172. 172.
    Speth RL, Ghoniem AF (2009) Using a strained flame model to collapse dynamic mode data in a swirl-stabilized syngas combustor. Proc Combust Inst 32:2993–3000CrossRefGoogle Scholar
  173. 173.
    Speth RL, Hong S, Shanbhogue SJ, Ghoniem AF (2011) Mode selection in flame-vortex driven combustion instabilities. In: 49th AIAA aerospace sciences meeting; 236Google Scholar
  174. 174.
    Speth RL (2010) Fundamental studies in hydrogen-rich combustion: in-stability mechanisms and dynamic mode selection. Ph.D. thesis, Massachusetts Institute of TechnologyGoogle Scholar
  175. 175.
    Altay HM, Speth RL, Hudgins DE, Ghoniem AF (2009) Flame-vortex interaction driven combustion dynamics in a backward-facing step combustor. Combust Flame 156:1111–1125CrossRefGoogle Scholar
  176. 176.
    Hong S, Shanbhogue SJ, Ghoniem AF (2015) Impact of fuel composition on the recirculation zone structure and its role in lean premixed flame anchoring. Proc Combust Inst 35:1493–1500CrossRefGoogle Scholar
  177. 177.
    Shanbhogue SJ, Husain S, Lieuwen T (2009) Lean blow-off of bluff body stabilized flames: scaling and dynamics. Prog Energy Combust Sci 35:98–120CrossRefGoogle Scholar
  178. 178.
    Kedia KS, Ghoniem AF (2014) The anchoring mechanism of a bluff-body stabilized laminar premixed flame. Combust Flame 161:2327–2339CrossRefGoogle Scholar
  179. 179.
    Altay HM, Speth RL, Hudgins DE, Ghoniem AF (2009) The impact of equivalence ratio oscillations on combustion dynamics in a backward-facing step combustor. Combust Flame 156:2106–2116CrossRefGoogle Scholar
  180. 180.
    Ferguson D, Straub D, Richards G, Robey E (2007) Impact of fuel variability on dynamic instabilities in gas turbine combustion. In: 5th US combustion meetingGoogle Scholar
  181. 181.
    Fritsche D, Furi M, Boulouchos K (2007) An experimental investigation of thermoacoustic instabilities in a premixed swirl-stabilized flame. Combust Flame 151:29–36CrossRefGoogle Scholar
  182. 182.
    Seo S (1999) Parametric study of lean-premixed combustion instability in a pressurized model gas turbine combustor. Ph.D. thesis; Department of Mechanical and Nuclear Engineering, the Pennsylvania State University: University Park, PAGoogle Scholar
  183. 183.
    Venkataraman KK, Preston LH, Simons DW, Lee BJ, Lee JG, Santavicca DA (1999) Mechanisms of combustion instability in a lean premixed dump combustor. J Propul Power 15:909–918CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Medhat A. Nemitallah
    • 1
    Email author
  • Mohamed A. Habib
    • 2
  • Hassan M. Badr
    • 3
  1. 1.TIC in CCS and Mechanical Engineering DepartmentKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia
  2. 2.TIC in CCS and Mechanical Engineering DepartmentKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia
  3. 3.TIC in CCS and Mechanical Engineering DepartmentKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia

Personalised recommendations