Advertisement

Study of Optical Fibre Dispersion and Measuring Methods

  • Iraj Sadegh Amiri
  • Masih Ghasemi
Chapter
Part of the SpringerBriefs in Electrical and Computer Engineering book series (BRIEFSELECTRIC)

Abstract

Generally, the design of apparatus configuration plays fundamental and deterministic role over acquired outcome. For any suggested model, there would be many devices available in the laboratory that meet our required expectation on the quantity of proposed variables or parameters. However, some of the devices do not meet the desired reliability, stability or accuracy quality. For the intent of this book, in addition of the above qualities, the response time of measuring device is quite a significant factor. In the following sections, important features and characteristics of active or passive elements will be investigated to exploit them in implementing the design for characterizing dispersion of the optical field.

References

  1. 1.
    J.H. Wiesenfeld, J. Stone, Measurement of dispersion using short lengths of an optical fiber and picosecond pulses from semiconductor film lasers. J. Lightwave Technol. LT-2, 464 (1984)CrossRefGoogle Scholar
  2. 2.
    P. Merrit, R.P. Tatam, D.A. Jackson, Interferometric chromatic dispersion measurements on short lengths of Monomode optical fiber. J. Lightwave Technol. 7, 703–716 (1989)CrossRefGoogle Scholar
  3. 3.
    Y.O. Noh, D.Y. Kim, S.K. Oh, U.C. Pack. Dispersion measurements of a short length optical fiber using Fourier transform spectroscopy, ThB5, Cleo, Pacific Rim’99, pp. 599–600, (1999). P. J. Harshman, T. K. Gustafson, P. Kelley, Title of paper, J. Chem. Phys. 3, (to be published)Google Scholar
  4. 4.
    P. Hamel, Y. Jaouen, R. Gabet, Optical low-coherence reflectometry for complete chromatic dispersion characterization of few-mode fibers. Opt. Lett. 32(9), 1029 (2007)CrossRefGoogle Scholar
  5. 5.
    F. Hakimi, H. Hakimi, Measurement of optical fiber dispersion and dispersion slope using a pair of short optical pulses and Fourier transform property of dispersive medium. Opt. Eng. 40(6) (2001)CrossRefGoogle Scholar
  6. 6.
    C. Palavicini, Y. Jaouën, G. Debarge, E. Kerrinckx, Y. Quiquempois, M. Douay, C. Lepers, A.-F. Obaton, G. Melin, Phase-sensitive optical low-coherence reflectometry technique applied to the characterization of photonic crystal fiber properties. Opt. Lett. 30, 361 (2005)CrossRefGoogle Scholar
  7. 7.
    A. Wax, C. Yang, J.A. Izatt, Fourier-domain low-coherence interferometry for light-scattering spectroscopy. Opt. Lett. 28, 1230–1232 (2003)CrossRefGoogle Scholar
  8. 8.
    K. Takada, I. Yokohama, K. Chida, J. Noda, New measurement system for fault location in optical waveguide devices based on an interferometric technique. Appl. Opt. 26, 1603–1605 (1987)CrossRefGoogle Scholar
  9. 9.
    R.K. Hickernell, T. Kaumasa, M. Yamada, M. Shimizu, M. Horiguchi, Pump-induced dispersion of erbium-doped fiber measured by Fourier-transform spectroscopy. Opt. Lett. 18(1), 19–21 (1993)CrossRefGoogle Scholar
  10. 10.
    AQ8201 Series Optical Test& Measurement System Instruction Manual (Andoelectric Co. Ltd, Japan, 2000), p. 200Google Scholar
  11. 11.
    Fiber Polarization Controller-FPC560 Data Sheet Google Scholar
  12. 12.
    M. Jarrahi, T.H. Lee, D.A.B. Miller, Wideband, low driving voltage traveling-wave Mach–Zehnder modulator for RF photonics. IEEE Photonic Technol. Lett. 20(7), 517–519 (2008)CrossRefGoogle Scholar
  13. 13.
    A.E.N.A. Mohamed, M.A. Metawe’e, A.N.Z. Rashed, A.M. Bendary, Recent progress of LiNbO3 based electrooptic modulators with non return to zero (NRZ) coding in high speed photonic networks. Int. J. Inform. Comm. Technol. Res. 1(2), 55–63 (2011)Google Scholar
  14. 14.
    G.L. Li, S.A. Pappert, C.K. Sun, W.S.C. Chang, and P.K.L. Yu, Wide Bandwidth Travelling Wave InGaAsP/InP Electro Absorption Modulator for millimeter Wave Applications, in IEEE MTT-S Int. Microwave Symp. Dig., 2001, pp. 61–64Google Scholar
  15. 15.
    TIA/EIA FOTP-175, Chromatic dispersion measurement of single mode optical fibers by the differential phase shift method (Telecommunications Industry Association, Washington, 1992)Google Scholar
  16. 16.
    User’s guide, optical power and wavelength meter OMM-6810B Google Scholar
  17. 17.
    Agilent 1000 Series Oscilloscopes, programmer’s guide Google Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Iraj Sadegh Amiri
    • 1
    • 2
  • Masih Ghasemi
    • 3
  1. 1.Computational Optics Research Group, Advanced Institute of Materials ScienceTon Duc Thang UniversityHo Chi Minh CityVietnam
  2. 2.Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam
  3. 3.Institute of Microengineering and NanoelectronicsUniversiti Kebangsaan MalaysiaSelangorMalaysia

Personalised recommendations