Advertisement

Near Net Shape Manufacturing of Dental Implants Using Additive Processes

  • Amr Elshaer
  • Sawmya Nair
  • Hany HassaninEmail author
Chapter
Part of the Materials Forming, Machining and Tribology book series (MFMT)

Abstract

Dental implantation was introduced as a restorative procedure to reinstate the teeth functions and put the patient in normal contour, comfort, speech and health. Dental implants have been used over the centuries and the production techniques have been developed over the years. One of the advanced technologies is additive manufacturing (AM) which enables high degree of freedom ability to produce complex shaped and customized parts similar to human teeth. AM facilitates the production of complex geometric structure without the need of preparing expensive tools, hence it is more cost effective and time saving process. The current chapter provides an overview of AM as a promising technology for near net shape production of dental in preparing customised dental implants. The chapter also explore the anatomy and mechanical properties of human teeth together with the requirements for the design of teeth implants. The chapter survey the current AM technologies used for dental implant, clinical implications and highlights the future trend of AM in the development of near net shaped dental implants.

Keywords

Additive manufacturing Dental implant 3D printing Clinical evaluation 

References

  1. 1.
    Leal R, Barreiros FM, Alves L, Romeiro F, Vasco JC, Santos M et al (2017) Additive manufacturing tooling for the automotive industry. Int J Adv Manuf Technol 92:1–7CrossRefGoogle Scholar
  2. 2.
    Bubna P, Humbert MP, Wiseman M, Manes E (2016) Barriers to entry in automotive production and opportunities with emerging additive manufacturing techniques, vol 0329, p 8. SAE technical papersGoogle Scholar
  3. 3.
    Chua CK, Leong KF (2014) 3D printing and additive manufacturing: principles and applications. World ScientificGoogle Scholar
  4. 4.
    Essa K, Hassanin H, Attallah M, Adkins N, Musker A, Roberts G et al (2017) Development and testing of an additively manufactured monolithic catalyst bed for HTP thruster applications. Appl Catal A Gen 542:125-135CrossRefGoogle Scholar
  5. 5.
    Uriondo A, Esperon-Miguez M, Perinpanayagam S (2015) The present and future of additive manufacturing in the aerospace sector: a review of important aspects. Proc Inst Mech Eng Part G J Aerosp Eng 229:2132–2147CrossRefGoogle Scholar
  6. 6.
    Zhang L-C, Attar H (2016) Selective laser melting of titanium alloys and titanium matrix composites for biomedical applications: a review. Adv Eng Mater 18:463–475CrossRefGoogle Scholar
  7. 7.
    Hao YL, Li SJ, Yang R (2016) Biomedical titanium alloys and their additive manufacturing. Rare Met 35:661–671CrossRefGoogle Scholar
  8. 8.
    Lee J-Y, Tan WS, An J, Chua CK, Tang CY, Fane AG et al (2016) The potential to enhance membrane module design with 3D printing technology. J Membr Sci 499:480–490CrossRefGoogle Scholar
  9. 9.
    Yap YL, Yeong WY (2014) Additive manufacture of fashion and jewellery products: a mini review: this paper provides an insight into the future of 3D printing industries for fashion and jewellery products. Virtual Phys Prototyp 9:195–201CrossRefGoogle Scholar
  10. 10.
    Petrick IJ, Simpson TW (2013) 3D printing disrupts manufacturing: how economies of one create new rules of competition: 3D printing may represent a disruption to the manufacturing industry as profound as the industrial revolution. (Point of view). Res Technol Manag 56:12CrossRefGoogle Scholar
  11. 11.
    Wohlers-Associates-Inc (2013) Additive manufacturing industry surpassed US$5.1 billion in 2015. Met Powder Rep 71:288Google Scholar
  12. 12.
    Fraser GJ, Graham A, Smith MM (2006) Developmental and evolutionary origins of the vertebrate dentition: molecular controls for spatio-temporal organisation of tooth sites in osteichthyans. J Exp Zool Part B Mol Dev Evol 306B:183–203CrossRefGoogle Scholar
  13. 13.
    Smith MM, Fraser GJ, Chaplin N, Hobbs C, Graham A (2009) Reiterative pattern of sonic hedgehog expression in the catshark dentition reveals a phylogenetic template for jawed vertebrates. Proc Roy Soc B Biol Sci 276:1225–1233CrossRefGoogle Scholar
  14. 14.
    Vonk FJ, Admiraal JF, Jackson K, Reshef R, de Bakker MAG, Vanderschoot K et al (2008) Evolutionary origin and development of snake fangs. Nature 454:630 (online)CrossRefGoogle Scholar
  15. 15.
    Mahoney E, Ismail FSM, Kilpatrick N, Swain M (2004) Mechanical properties across hypomineralized/hypoplastic enamel of first permanent molar teeth. Eur J Oral Sci 112:497–502CrossRefGoogle Scholar
  16. 16.
    Mahoney EK, Rohanizadeh R, Ismail FSM, Kilpatrick NM, Swain MV (2004) Mechanical properties and microstructure of hypomineralised enamel of permanent teeth. Biomaterials 25:5091–5100CrossRefGoogle Scholar
  17. 17.
    Niinomi M, Nakai M (2011) Titanium-based biomaterials for preventing stress shielding between implant devices and bone. Int J Biomater 2011:10CrossRefGoogle Scholar
  18. 18.
    Sansone V, Pagani D, Melato M (2013) The effects on bone cells of metal ions released from orthopaedic implants. A review. Clin Cases Miner Bone Metab 10:34–40Google Scholar
  19. 19.
    Zitter H, Plenk H Jr (1987) The electrochemical behavior of metallic implant materials as an indicator of their biocompatibility. J Biomed Mater Res 21:881–896CrossRefGoogle Scholar
  20. 20.
    Shibli JA, Grassi S, De Figueiredo LC, Feres M, Marcantonio E Jr, Iezzi G et al (2007) Influence of implant surface topography on early osseointegration: a histological study in human jaws. J Biomed Mater Res Part B Appl Biomater 80:377–385CrossRefGoogle Scholar
  21. 21.
    Shibli JA, Grassi S, Piattelli A, Pecora GE, Ferrari DS, Onuma T et al (2010) Histomorphometric evaluation of bioceramic molecular impregnated and dual acid-etched implant surfaces in the human posterior maxilla. Clin Implant Dent Relat Res 12:281–288CrossRefGoogle Scholar
  22. 22.
    Curtis A, Clark P (1990) The effects of topographical and mechanical properties of materials on cell behavior. Crit Rev Biocompat 4:343–362Google Scholar
  23. 23.
    Romeo E, Lops D, Margutti E, Ghisolfi M, Chiapasco M, Vogel G (2004) Long-term survival and success of oral implants in the treatment of full and partial arches: a 7-year prospective study with the ITI dental implant system. Int J Oral Maxillofac Implants 19:247–259Google Scholar
  24. 24.
    Khayat PG, Milliez SN (2007) Prospective clinical evaluation of 835 multithreaded tapered screw-vent implants: results after two years of functional loading. J Oral Implantol 33:225–231CrossRefGoogle Scholar
  25. 25.
    Lecomte A, Gautier H, Bouler JM, Gouyette A, Pegon Y, Daculsi G et al (2008) Biphasic calcium phosphate: a comparative study of interconnected porosity in two ceramics. J Biomed Mater Res Part B Appl Biomater 84:1–6CrossRefGoogle Scholar
  26. 26.
    Kröger H, Venesmaa P, Jurvelin J, Miettinen H, Suomalainen O, Alhava E (1998) Bone density at the proximal femur after total hip arthroplasty. Clin Orthop Relat Res 352:66–74Google Scholar
  27. 27.
    Habibovic P, Yuan H, Van Der Valk CM, Meijer G, Van Blitterswijk CA, De Groot K (2005) 3D microenvironment as essential element for osteoinduction by biomaterials. Biomaterials 26:3565–3575CrossRefGoogle Scholar
  28. 28.
    Kuboki Y, Jin Q, Takita H (2001) Geometry of carriers controlling phenotypic expression in BMP-induced osteogenesis and chondrogenesis. J Bone Joint Surg Ser A 83:S1105–S1115Google Scholar
  29. 29.
    Boyan BD, Hummert TW, Dean DD, Schwartz Z (1996) Role of material surfaces in regulating bone and cartilage cell response. Biomaterials 17:137–146CrossRefGoogle Scholar
  30. 30.
    Larsson C, Esposito M, Liao H, Thomsen P (2001) The titanium-bone interface in vivo. In: Titanium in medicine: material science, surface science, engineering, biological responses and medical applications. Springer, Berlin, Heidelberg, pp 587–648Google Scholar
  31. 31.
    Hassanin H, Modica F, El-Sayed MA, Liu J, Essa K (2016) Manufacturing of Ti–6Al– V micro-implantable parts using hybrid selective laser melting and micro-electrical discharge machining. Adv Eng Mater 18:1544–1549CrossRefGoogle Scholar
  32. 32.
    El-Sayed MA, Hassanin H, Essa K (2016) Effect of casting practice on the reliability of Al cast alloys. Int J Cast Met Res 29:350–354CrossRefGoogle Scholar
  33. 33.
    Hassanin H, Finet L, Cox SC, Jamshidi P, Grover LM, Shepherd DET et al (2018) Tailoring selective laser melting process for titanium drug-delivering implants with releasing micro-channels. Add Manuf 20:144–155CrossRefGoogle Scholar
  34. 34.
    Essa K, Jamshidi P, Zou J, Attallah MM, Hassanin H (2018) Porosity control in 316L stainless steel using cold and hot isostatic pressing. Mater Des 138:21–29CrossRefGoogle Scholar
  35. 35.
    Hassanin H, Jiang K (2014) Net shape manufacturing of ceramic micro parts with tailored graded layers. J Micromech Microeng 24:015018CrossRefGoogle Scholar
  36. 36.
    Hassanin H, Jiang K (2010) Infiltration-processed, functionally graded materials for microceramic componenets. In: 2010 IEEE 23rd international conference on micro electro mechanical systems (MEMS), pp 368–371Google Scholar
  37. 37.
    Hassanin H, Jiang K (2013) Fabrication and characterization of stabilised zirconia micro parts via slip casting and soft moulding. Scripta Mater 69:433–436CrossRefGoogle Scholar
  38. 38.
    Johansson CB, Wennerberg A, Albrektsson T (1994) Quantitative comparison of screw-shaped commercially pure titanium and zirconium implants in rabbit tibia. J Mater Sci Mater Med 5:340–344CrossRefGoogle Scholar
  39. 39.
    Lacefield WR (1998) Current status of ceramic coatings for dental implants. Implant Dent 7:315–322CrossRefGoogle Scholar
  40. 40.
    Denry I, Kelly JR (2008) State of the art of zirconia for dental applications. Dent Mater 24:299–307CrossRefGoogle Scholar
  41. 41.
    Tumbleston JR, Shirvanyants D, Ermoshkin N, Janusziewicz R, Johnson AR, Kelly D et al (2015) Continuous liquid interface production of 3D objects. Science 347:1349–1352 (American Association for the Advancement of Science)CrossRefGoogle Scholar
  42. 42.
    Cazón A, Morer P, Matey L (2014) PolyJet technology for product prototyping: tensile strength and surface roughness properties. Proc Inst Mech Eng Part B J Eng Manuf 228:1664–1675CrossRefGoogle Scholar
  43. 43.
    Singh R (2014) Process capability analysis of fused deposition modelling for plastic components. Rapid Prototyp J 20:69–76CrossRefGoogle Scholar
  44. 44.
    Kaierle S, Barroi A, Noelke C, Hermsdorf J, Overmeyer L, Haferkamp H (2012) Review on laser deposition welding: from micro to macro. Phys Procedia 39:336–345CrossRefGoogle Scholar
  45. 45.
    Wu H, Li D, Tang Y, Sun B, Xu D (2009) Rapid fabrication of alumina-based ceramic cores for gas turbine blades by stereolithography and gelcasting. J Mater Process Technol 209:5886–5891CrossRefGoogle Scholar
  46. 46.
    Williams RE, Komaragiri SN, Melton VL, Bishu RR (1996) Investigation of the effect of various build methods on the performance of rapid prototyping (stereolithography). J Mater Process Technol 61:173–178CrossRefGoogle Scholar
  47. 47.
    Nowotny S, Thieme S, Scharek S, Rönnefahrt T, Gnann RA (2008) FLEXILAS - Laser-Präzisionstechnologie zum Auftragschweißen mit zentrischer Drahtzufuhr. In: Die Verbindungs Spezialisten 2008, pp 318–322Google Scholar
  48. 48.
    Bikas H, Stavropoulos P, Chryssolouris G (2016) Additive manufacturing methods and modelling approaches: a critical review. Int J Adv Manuf Technol 83:389–405CrossRefGoogle Scholar
  49. 49.
    Özkol E, Zhang W, Ebert J, Telle R (2012) Potentials of the “Direct inkjet printing” method for manufacturing 3Y-TZP based dental restorations. J Eur Ceram Soc 32:2193–2201CrossRefGoogle Scholar
  50. 50.
    AMT/8 (2015) Additive manufacturing. General principles. Overview of process categories and feedstock, vol BS EN ISO 17296, 1st edn, p 8Google Scholar
  51. 51.
    Brandt J, Lauer H-C, Peter T, Brandt S (2015) Digital process for an implant-supported fixed dental prosthesis: a clinical report. J Prosthet Dent 114:469–473CrossRefGoogle Scholar
  52. 52.
    Kumar YR (2012) Bio-modelling using rapid prototyping by fused deposition. Adv Mater Res 488–489:1021–1025CrossRefGoogle Scholar
  53. 53.
    Goh BT, Teh LY, Tan DBP, Zhang Z, Teoh SH (2015) Novel 3D polycaprolactone scaffold for ridge preservation—a pilot randomised controlled clinical trial. Clin Oral Implant Res 26:271–277CrossRefGoogle Scholar
  54. 54.
    Gu DD, Meiners W, Wissenbach K, Poprawe R (2012) Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int Mater Rev 57:133–164CrossRefGoogle Scholar
  55. 55.
    Hassanin H, Essa K, Qiu C, Abdelhafeez AM, Adkins NJ, Attallah MM (2017) Net-shape manufacturing using hybrid selective laser melting/hot isostatic pressing. Rapid Prototyp J 23:720CrossRefGoogle Scholar
  56. 56.
    Sabouri A, Yetisen AK, Sadigzade R, Hassanin H, Essa K, Butt H (2017) Three-dimensional microstructured lattices for oil sensing. Energy Fuels 31:2524–2529CrossRefGoogle Scholar
  57. 57.
    Chen J, Zhang Z, Chen X, Zhang C, Zhang G, Xu Z (2014) Design and manufacture of customized dental implants by using reverse engineering and selective laser melting technology. J Prosthet Dent 112:1088–1095.e1CrossRefGoogle Scholar
  58. 58.
    Tolochko NK, Savich VV, Laoui T, Froyen L, Onofrio G, Signorelli E et al (2002) Dental root implants produced by the combined selective laser sintering/melting of titanium powders. Proc Inst Mech Eng Part L J Mater Des Appl 216:267–270Google Scholar
  59. 59.
    Traini T, Mangano C, Sammons RL, Mangano F, Macchi A, Piattelli A (2008) Direct laser metal sintering as a new approach to fabrication of an isoelastic functionally graded material for manufacture of porous titanium dental implants. Dent Mater 24:1525–1533CrossRefGoogle Scholar
  60. 60.
    Körner C (2016) Additive manufacturing of metallic components by selective electron beam melting—a review. Int Mater Rev 61:361–377CrossRefGoogle Scholar
  61. 61.
    Chahine G, Koike M, Okabe T, Smith P, Kovacevic R (2008) The design and production of Ti-6Al-4V ELI customized dental implants. JOM 60:50–55CrossRefGoogle Scholar
  62. 62.
    Ramakrishnaiah R, Al kheraif AA, Mohammad A, Divakar DD, Kotha SB, Celur SL et al (2017) Preliminary fabrication and characterization of electron beam melted Ti–6Al–4V customized dental implant. Saudi J Biol Sci 24:787–796CrossRefGoogle Scholar
  63. 63.
    Yang J, Cai H, Lv J, Zhang K, Leng H, Wang Z et al (2014) Biomechanical and histological evaluation of roughened surface titanium screws fabricated by electron beam melting. PLoS ONE 9:e96179CrossRefGoogle Scholar
  64. 64.
    Elmagrabi N, Che Hassan CH, Jaharah AG, Shuaeib FM (2008) High speed milling of Ti-6Al-4V using coated carbide tools. Eur J Sci Res 22:153–162Google Scholar
  65. 65.
    Hrabe NW, Heinl P, Bordia RK, Körner C, Fernandes RJ (2013) Maintenance of a bone collagen phenotype by osteoblast-like cells in 3D periodic porous titanium (Ti-6Al-4V) structures fabricated by selective electron beam melting. Connect Tissue Res 54.  https://doi.org/10.3109/03008207.2013.822864CrossRefGoogle Scholar
  66. 66.
    Jamshidinia M, Wang L, Tong W, Ajlouni R, Kovacevic R (2015) Fatigue properties of a dental implant produced by electron beam melting® (EBM). J Mater Process Technol 226:255–263CrossRefGoogle Scholar
  67. 67.
    Vasak C, Strbac GD, Huber CD, Lettner S, Gahleitner A, Zechner W (2015) Evaluation of three different validation procedures regarding the accuracy of template-guided implant placement: an in vitro study. Clin Implant Dent Relat Res 17:142–149CrossRefGoogle Scholar
  68. 68.
    Kühl S, Payer M, Zitzmann NU, Lambrecht JT, Filippi A (2015) Technical accuracy of printed surgical templates for guided implant surgery with the coDiagnostiXTM software. Clin Implant Dent Relat Res 17:e177–e182CrossRefGoogle Scholar
  69. 69.
    Jiang C-P, Hsu H-J, Lee S-Y (2014) Development of mask-less projection slurry stereolithography for the fabrication of zirconia dental coping. Int J Precis Eng Manuf 15:2413–2419CrossRefGoogle Scholar
  70. 70.
    Mitteramskogler G, Gmeiner R, Felzmann R, Gruber S, Hofstetter C, Stampfl J et al (2014) Light curing strategies for lithography-based additive manufacturing of customized ceramics. Addit Manuf 1:110–118CrossRefGoogle Scholar
  71. 71.
    Osman RB, van der Veen AJ, Huiberts D, Wismeijer D, Alharbi N (2017) 3D-printing zirconia implants; a dream or a reality? An in-vitro study evaluating the dimensional accuracy, surface topography and mechanical properties of printed zirconia implant and discs. J Mech Behav Biomed Mater 75:521–528CrossRefGoogle Scholar
  72. 72.
    Mangano C, De Rosa A, Desiderio V, d’Aquino R, Piattelli A, De Francesco F et al (2010) The osteoblastic differentiation of dental pulp stem cells and bone formation on different titanium surface textures. Biomaterials 31:3543–3551CrossRefGoogle Scholar
  73. 73.
    Mangano C, Raspanti M, Traini T, Piattelli A, Sammons R (2009) Stereo imaging and cytocompatibility of a model dental implant surface formed by direct laser fabrication. J Biomed Mater Res Part A 88:823–831CrossRefGoogle Scholar
  74. 74.
    Witek L, Marin C, Granato R, Bonfante EA, Campos F, Bisinotto J et al (2012) Characterization and in vivo evaluation of laser sintered dental endosseous implants in dogs. J Biomed Mater Res B Appl Biomater 100B:1566–1573CrossRefGoogle Scholar
  75. 75.
    Stübinger S, Mosch I, Robotti P, Sidler M, Klein K, Ferguson SJ et al (2013) Histological and biomechanical analysis of porous additive manufactured implants made by direct metal laser sintering: a pilot study in sheep. J Biomed Mater Res Part B Appl Biomater 101:1154–1163CrossRefGoogle Scholar
  76. 76.
    Ponader S, Von Wilmowsky C, Widenmayer M, Lutz R, Heinl P, Körner C et al (2010) In vivo performance of selective electron beam-melted Ti-6Al-4V structures. J Biomed Mater Res Part A 92:56–62CrossRefGoogle Scholar
  77. 77.
    Mangano C, Piattelli A, Raspanti M, Mangano F, Cassoni A, Iezzi G et al (2011) Scanning electron microscopy (SEM) and X-ray dispersive spectrometry evaluation of direct laser metal sintering surface and human bone interface: a case series. Lasers Med Sci 26:133–138CrossRefGoogle Scholar
  78. 78.
    Shibli JA, Mangano C, Mangano F, Rodrigues JA, Cassoni A, Bechara K et al (2013) Bone-to-implant contact around immediately loaded direct laser metal-forming transitional implants in human posterior maxilla. J Periodontol 84:732–737CrossRefGoogle Scholar
  79. 79.
    Mangano C, Mangano F, Shibli JA, Luongo G, De Franco M, Briguglio F et al (2012) Prospective clinical evaluation of 201 direct laser metal forming implants: results from a 1-year multicenter study. Lasers Med Sci 27:181–189CrossRefGoogle Scholar
  80. 80.
    Mangano F, Luongo F, Shibli JA, Anil S, and C. Mangano, Maxillary overdentures supported by four splinted direct metal laser sintering implants: a 3-year prospective clinical study. Int J Dent 2014Google Scholar
  81. 81.
    Tunchel S, Blay A, Kolerman R, Mijiritsky E, Shibli JA (2016) 3D printing/additive manufacturing single titanium dental implants: a prospective multicenter study with 3 years of follow-up. Int J Dent 2016Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Drug Discovery, Delivery and Patient Care (DDDPC), School of Life Sciences, Pharmacy and ChemistryKingston University LondonLondonUK
  2. 2.School of EngineeringUniversity of LiverpoolLiverpoolUK

Personalised recommendations