WALCOM 2019: WALCOM: Algorithms and Computation pp 407-418

# Capacitated Discrete Unit Disk Cover

• Pawan K. Mishra
• Sangram K. Jena
• Gautam K. Das
• S. V. Rao
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11355)

## Abstract

Consider a capacitated version of the discrete unit disk cover problem as follows: consider a set $$P= \{p_1,p_2, \cdots ,p_n\}$$ of n customers and a set $$Q=\{q_1,q_2, \cdots ,q_m\}$$ of m service centers. A service center can provide service to at most $$\alpha ( \in \mathbb {N})$$ number of customers. Each $$q_i \in Q$$ $$(i=1,2, \cdots ,m)$$ has a preassigned set of customers to which it can provide service. The objective of the capacitated covering problem is to provide service to each customer in P by at least one service center in Q. In this paper, we consider the geometric version of the capacitated covering problem, where the set of customers and set of service centers are two point sets in the Euclidean plane. A service center can provide service to a customer if their Euclidean distance is less than or equal to 1. We call this problem as $$(\alpha , P, Q)$$-covering problem. For the $$(\alpha , P, Q)$$-covering problem, we propose an $$O(\alpha mn(m+n))$$ time algorithm to check feasible solution for a given instance. We also prove that the $$(\alpha , P, Q)$$-covering problem is NP-complete for $$\alpha \ge 3$$ and it admits a PTAS.

## Keywords

Geometric covering NP-complete PTAS

## References

1. 1.
Ambühl, C., Erlebach, T., Mihalák, M., Nunkesser, M.: Constant-factor approximation for minimum-weight (connected) dominating sets in unit disk graphs. In: Díaz, J., Jansen, K., Rolim, J.D.P., Zwick, U. (eds.) APPROX/RANDOM -2006. LNCS, vol. 4110, pp. 3–14. Springer, Heidelberg (2006).
2. 2.
Basappa, M., Acharyya, R., Das, G.K.: Unit disk cover problem in 2D. J. Discrete Algorithms 33, 193–201 (2015)
3. 3.
Biedl, T., Kant, G.: A better heuristic for orthogonal graph drawings. Comput. Geom. 9(3), 159–180 (1998)
4. 4.
Brönnimann, H., Goodrich, M.T.: Almost optimal set covers in finite VC-dimension. Discrete Comput. Geom. 14(4), 463–479 (1995)
5. 5.
Călinescu, G., Mandoiu, I.I., Wan, P.J., Zelikovsky, A.Z.: Selecting forwarding neighbors in wireless ad hoc networks. Mobile Netw. Appl. 9(2), 101–111 (2004)
6. 6.
Carmi, P., Katz, M.J., Lev-Tov, N.: Covering points by unit disks of fixed location. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 644–655. Springer, Heidelberg (2007).
7. 7.
Claude, F., et al.: An improved line-separable algorithm for discrete unit disk cover. Discrete Math. Algorithms Appl. 2(01), 77–87 (2010)
8. 8.
Das, G.K., Fraser, R., López-Ortiz, A., Nickerson, B.G.: On the discrete unit disk cover problem. Int. J. Comput. Geom. Appl. 22(05), 407–419 (2012)
9. 9.
Federickson, G.N.: Fast algorithms for shortest paths in planar graphs, with applications. SIAM J. Comput. 16(6), 1004–1022 (1987)
10. 10.
Feige, U.: A threshold of ln n for approximating set cover. J. ACM (JACM) 45(4), 634–652 (1998)
11. 11.
Fraser, R., López-Ortiz, A.: The within-strip discrete unit disk cover problem. Theor. Comput. Sci. 674, 99–115 (2017)
12. 12.
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, New York (1979)
13. 13.
Haussler, D., Welzl, E.: $$\epsilon$$-nets and simplex range queries. Discrete & Computational Geometry 2(2), 127–151 (1987)
14. 14.
Kleinberg, J., Tardos, E.: Algorithm Design. Addison-Wesley Longman Publishing Co. Inc, Boston (2005)Google Scholar
15. 15.
Mustafa, N.H., Ray, S.: Improved results on geometric hitting set problems. Discrete Comput. Geom. 44(4), 883–895 (2010)
16. 16.
Mustafa, N.H., Ray, S.: PTAS for geometric hitting set problems via local search. In: Proceedings of the Twenty-fifth Annual Symposium on Computational Geometry, pp. 17–22. ACM (2009)Google Scholar
17. 17.
Valiant, L.G.: Universality considerations in VLSI circuits. IEEE Trans. Comput. 100(2), 135–140 (1981)

© Springer Nature Switzerland AG 2019

## Authors and Affiliations

• Pawan K. Mishra
• 1
• Sangram K. Jena
• 1
• Gautam K. Das
• 1
Email author
• S. V. Rao
• 1
1. 1.Indian Institute of TechnologyGuwahatiIndia