Advertisement

Packing 2D Disks into a 3D Container

  • Helmut AltEmail author
  • Otfried Cheong
  • Ji-won Park
  • Nadja Scharf
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11355)

Abstract

In this article, we consider the problem of finding in three dimensions a minimum volume axis-parallel box into which a given set of unit size disks can be packed under translations. The problem is neither known to be NP-hard nor to be in NP. We give a constant factor approximation algorithm based on reduction to finding a shortest Hamiltonian path in a weighted graph. As a byproduct, we can show that there is no finite size container into which all unit disks can be packed simultaneously.

References

  1. 1.
    Alt, H.: Computational aspects of packing problems. Bull. EATCS 118, 28–42 (2016). http://eatcs.org/images/bulletin/beatcs118.pdfMathSciNetGoogle Scholar
  2. 2.
    Alt, H., de Berg, M., Knauer, C.: Approximating minimum-area rectangular and convex containers for packing convex polygons. JoCG 8(1), 1–10 (2017)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Alt, H., Scharf, N.: Approximating Smallest Containers for Packing Three-Dimensional Convex Objects. Int. J. Comput. Geom. Appl. 28(2), 111–128 (2018).  https://doi.org/10.1142/S0218195918600026MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Diedrich, F., Harren, R., Jansen, K., Thöle, R., Thomas, H.: Approximation algorithms for 3D orthogonal knapsack. J. Comput. Sci. Technol. 23(5), 749–762 (2008).  https://doi.org/10.1007/s11390-008-9170-7
  5. 5.
    Fowler, R.J., Paterson, M., Tanimoto, S.L.: Optimal packing and covering in the plane are NP-complete. Inf. Process. Lett. 12(3), 133–137 (1981)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Hoogeveen, J.A.: Analysis of christofides’ heuristic: some paths are more difficult than cycles. Oper. Res. Lett. 10(5), 291–295 (1991)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Jansen, K., Prädel, L.: A new asymptotic approximation algorithm for 3-dimensional strip packing. In: Geffert, V., Preneel, B., Rovan, B., Štuller, J., Tjoa, A.M. (eds.) SOFSEM 2014. LNCS, vol. 8327, pp. 327–338. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-04298-5_29CrossRefGoogle Scholar
  8. 8.
    von Niederhäusern, L.: Packing Polygons. Master’s thesis, EPFL Lausanne, FU Berlin (2014)Google Scholar
  9. 9.
    Scheithauer, G.: Zuschnitt- und Packungsoptimierung: Problemstellungen. Lösungsmethoden. Vieweg+Teubner Verlag, Modellierungstechniken (2008)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Helmut Alt
    • 1
    Email author
  • Otfried Cheong
    • 2
  • Ji-won Park
    • 2
  • Nadja Scharf
    • 1
  1. 1.Institut für InformatikFreie Universität BerlinBerlinGermany
  2. 2.School of ComputingKAISTDaejeonSouth Korea

Personalised recommendations