Advertisement

Greedy Consensus Tree and Maximum Greedy Consensus Tree Problems

  • Wing-Kin SungEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11355)

Abstract

Consensus tree is a phylogenetic tree that summarizes the branching information of a set of conflicting phylogenetic trees. Computing consensus tree is a major step in phylogenetic tree reconstruction. It also finds application in predicting a species tree from a set of gene trees. Here, we focus our study on one of the most frequently used consensus tree problem, called greedy consensus tree problem. Given k phylogenetic trees leaf-labeled by n taxa, previous best known algorithm for constructing a greedy consensus tree of these k trees runs in \(O(k n^{1.5} \log n)\) time. Here, we describe an \(O(k^2 n)\)-time solution. Our method is the fastest when \(k = O(\sqrt{n} \log n)\).

Existing greedy consensus tree methods may not report the most resolved greedy consensus tree. Here, we propose a new computational problem called the maximum greedy consensus tree problem that aims to find the most resolved greedy consensus tree. We showed that this problem is NP-hard for \(k \ge 3\). We also give a polynomial time solution when \(k=2\) and an approximation algorithm for \(k=3\).

References

  1. 1.
    Adams III, E.N.: Consensus techniques and the comparison of taxonomic trees. Syst. Biol. 21(4), 390–397 (1972)CrossRefGoogle Scholar
  2. 2.
    Bremer, K.: Combinable component consensus. Cladistics 6(4), 369–372 (1990)CrossRefGoogle Scholar
  3. 3.
    Bryantm, D.: A classification of consensus methods for phylogenetics. In: Janowitz, M.F., Lapointe, F.-J., McMorris, F.R., Mirkin, B., Roberts, F.S. (eds.) Bioconsensus. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 61, pp. 163–184. American Mathematical Society (2003)Google Scholar
  4. 4.
    Day, W.H.E.: Optimal algorithms for comparing trees with labeled leaves. J. Classif. 2, 7–28 (1985)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Felsenstein, J.: Inferring Phylogenies. Sinauer Associates, Inc., Sunderland (2004)Google Scholar
  6. 6.
    Felsenstein, J.: PHYLIP, version 3.6. Software package, Department of Genome Sciences, University of Washington, Seattle, USA (2005)Google Scholar
  7. 7.
    Gawrychowski, P., Landau, G.M., Sung, W.-K., Weimann, O.: A faster construction of greedy consensus trees. In: 45th International Colloquium on Automata, Languages, and Programming, ICALP 2018, Prague, Czech Republic, pp. 63:1–63:14, 9–13 July 2018Google Scholar
  8. 8.
    Jansson, J., Rajaby, R., Shen, C., Sung, W.-K.: Algorithms for the majority rule (+) consensus tree and the frequency difference consensus tree. IEEE/ACM Trans. Comput. Biol. Bioinform. September 2016Google Scholar
  9. 9.
    Jansson, J., Shen, C., Sung, W.-K.: Fast algorithms for consensus trees (FACT) (2013). http://compbio.ddns.comp.nus.edu.sg/~consensus.tree
  10. 10.
    Jansson, J., Shen, C., Sung, W.-K.: Improved algorithms for constructing consensus trees. J. ACM 63(3), 1–24 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Jansson, J., Sung, W.-K., Vu, H., Yiu, S.-M.: Faster algorithms for computing the R* consensus tree. In: Ahn, H.-K., Shin, C.-S. (eds.) ISAAC 2014. LNCS, vol. 8889, pp. 414–425. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-13075-0_33CrossRefzbMATHGoogle Scholar
  12. 12.
    Margush, T., McMorris, F.R.: Consensus \(n\)-trees. Bull. Math. Biol. 43(2), 239–244 (1981)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Phillips, C., Warnow, T.J.: The asymmetric median tree — a new model for building consensus trees. Discrete Appl. Math. 71(1–3), 311–335 (1996)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Phillips, C., Warnow, T.J.: The asymmetric median tree — a new model for building consensus trees. In: Hirschberg, D., Myers, G. (eds.) CPM 1996. LNCS, vol. 1075, pp. 234–252. Springer, Heidelberg (1996).  https://doi.org/10.1007/3-540-61258-0_18CrossRefGoogle Scholar
  15. 15.
    Rajaby, R., Sung, W.-K.: Computing asymmetric median tree of two trees via better bipartite matching algorithm. In: Brankovic, L., Ryan, J., Smyth, W.F. (eds.) IWOCA 2017. LNCS, vol. 10765, pp. 356–367. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-78825-8_29CrossRefGoogle Scholar
  16. 16.
    Ronquist, F., Huelsenbeck, J.P.: MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19(12), 1572–1574 (2003)CrossRefGoogle Scholar
  17. 17.
    Sokal, R.R., Rohlf, F.J.: Taxonomic congruence in the Leptopodomorpha re-examined. Syst. Zool. 30(3), 309–325 (1981)CrossRefGoogle Scholar
  18. 18.
    Sung, W.-K.: Algorithms in Bioinformatics: A Practical Introduction. Chapman & Hall/CRC, Boca Raton (2010)zbMATHGoogle Scholar
  19. 19.
    Swofford, D.L.: PAUP*, Version 4.0. Software Package. Sinauer Associates Inc., Sunderland (2003)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of ComputingNational University of SingaporeSingaporeSingapore
  2. 2.Genome Institute of SingaporeSingaporeSingapore

Personalised recommendations