WALCOM 2019: WALCOM: Algorithms and Computation pp 261-273

# Matching Sets of Line Segments

• Hyeyun Yang
• Antoine Vigneron
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11355)

## Abstract

We give approximation algorithms for matching two sets of line segments in constant dimension. We consider several versions of the problem: Hausdorff distance, bottleneck distance and largest common point set. We study these similarity measures under several sets of transformations: translations, rotations about a fixed point and rigid motions. As opposed to previous theoretical work on this problem, we match segments individually, in other words we regard our two input sets as sets of segments rather than unions of segments.

## Keywords

Geometric algorithms Approximation algorithms Pattern matching

## References

1. 1.
Ahn, H., Cheong, O., Park, C., Shin, C., Vigneron, A.: Maximizing the overlap of two planar convex sets under rigid motions. Comput. Geom. 37(1), 3–15 (2007)
2. 2.
Alt, H., Behrends, B., Blömer, J.: Approximate matching of polygonal shapes. Ann. Math. Artif. Intell. 13(3), 251–265 (1995)
3. 3.
Alt, H., Guibas, L.J.: Discrete geometric shapes: matching, interpolation, and approximation. In: Sack, J.R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 121–153. B.V. North-Holland, Amsterdam (2000). Chapter 3
4. 4.
Alt, H., Mehlhorn, K., Wagener, H., Welzl, E.: Congruence, similarity, and symmetries of geometric objects. Discrete Comput. Geom. 3(3), 237–256 (1988)
5. 5.
Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.Y.: An optimal algorithm for approximate nearest neighbor searching fixed dimensions. J. ACM 45(6), 891–923 (1998)
6. 6.
Cabello, S., de Berg, M., Giannopoulos, P., Knauer, C., van Oostrum, R., Veltkamp, R.C.: Maximizing the area of overlap of two unions of disks under rigid motion. Int. J. Comput. Geom. Appl. 19(6), 533–556 (2009)
7. 7.
Chen, H.H., Huang, T.S.: Matching 3-D line segments with applications to multiple-object motion estimation. IEEE Trans. Pattern Anal. Mach. Intell. 12(10), 1002–1008 (1990)
8. 8.
Chew, L., Goodrich, M.T., Huttenlocher, D.P., Kedem, K., Kleinberg, J.M., Kravets, D.: Geometric pattern matching under Euclidean motion. Comput. Geom. 7(1), 113–124 (1997)
9. 9.
Efrat, A., Itai, A., Katz, M.J.: Geometry helps in bottleneck matching and related problems. Algorithmica 31(1), 1–28 (2001)
10. 10.
Gao, M., Skolnick, J.: iAlign: a method for the structural comparison of protein-protein interfaces. Bioinformatics 26(18), 2259–2265 (2010)
11. 11.
Har-Peled, S., Roy, S.: Approximating the maximum overlap of polygons under translation. Algorithmica 78(1), 147–165 (2017)
12. 12.
Heffernan, P.J., Schirra, S.: Approximate decision algorithms for point set congruence. Comput. Geom. 4(3), 137–156 (1994)
13. 13.
Medioni, G.G., Nevatia, R.: Matching images using linear features. IEEE Trans. Pattern Anal. Mach. Intell. 6(6), 675–685 (1984)
14. 14.
Vigneron, A.: Geometric optimization and sums of algebraic functions. ACM Trans. Algorithms 10(1), 4:1–4:20 (2014)
15. 15.
Yon, J., Cheng, S., Cheong, O., Vigneron, A.: Finding largest common point sets. Int. J. Comput. Geom. Appl. 27(3), 177–186 (2017)

© Springer Nature Switzerland AG 2019

## Authors and Affiliations

• Hyeyun Yang
• 1
• Antoine Vigneron
• 1
1. 1.School of Electrical and Computer EngineeringUNISTUlsanRepublic of Korea