Matching Sets of Line Segments

  • Hyeyun Yang
  • Antoine VigneronEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11355)


We give approximation algorithms for matching two sets of line segments in constant dimension. We consider several versions of the problem: Hausdorff distance, bottleneck distance and largest common point set. We study these similarity measures under several sets of transformations: translations, rotations about a fixed point and rigid motions. As opposed to previous theoretical work on this problem, we match segments individually, in other words we regard our two input sets as sets of segments rather than unions of segments.


Geometric algorithms Approximation algorithms Pattern matching 


  1. 1.
    Ahn, H., Cheong, O., Park, C., Shin, C., Vigneron, A.: Maximizing the overlap of two planar convex sets under rigid motions. Comput. Geom. 37(1), 3–15 (2007)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Alt, H., Behrends, B., Blömer, J.: Approximate matching of polygonal shapes. Ann. Math. Artif. Intell. 13(3), 251–265 (1995)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Alt, H., Guibas, L.J.: Discrete geometric shapes: matching, interpolation, and approximation. In: Sack, J.R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 121–153. B.V. North-Holland, Amsterdam (2000). Chapter 3CrossRefGoogle Scholar
  4. 4.
    Alt, H., Mehlhorn, K., Wagener, H., Welzl, E.: Congruence, similarity, and symmetries of geometric objects. Discrete Comput. Geom. 3(3), 237–256 (1988)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.Y.: An optimal algorithm for approximate nearest neighbor searching fixed dimensions. J. ACM 45(6), 891–923 (1998)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Cabello, S., de Berg, M., Giannopoulos, P., Knauer, C., van Oostrum, R., Veltkamp, R.C.: Maximizing the area of overlap of two unions of disks under rigid motion. Int. J. Comput. Geom. Appl. 19(6), 533–556 (2009)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Chen, H.H., Huang, T.S.: Matching 3-D line segments with applications to multiple-object motion estimation. IEEE Trans. Pattern Anal. Mach. Intell. 12(10), 1002–1008 (1990)CrossRefGoogle Scholar
  8. 8.
    Chew, L., Goodrich, M.T., Huttenlocher, D.P., Kedem, K., Kleinberg, J.M., Kravets, D.: Geometric pattern matching under Euclidean motion. Comput. Geom. 7(1), 113–124 (1997)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Efrat, A., Itai, A., Katz, M.J.: Geometry helps in bottleneck matching and related problems. Algorithmica 31(1), 1–28 (2001)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Gao, M., Skolnick, J.: iAlign: a method for the structural comparison of protein-protein interfaces. Bioinformatics 26(18), 2259–2265 (2010)CrossRefGoogle Scholar
  11. 11.
    Har-Peled, S., Roy, S.: Approximating the maximum overlap of polygons under translation. Algorithmica 78(1), 147–165 (2017)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Heffernan, P.J., Schirra, S.: Approximate decision algorithms for point set congruence. Comput. Geom. 4(3), 137–156 (1994)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Medioni, G.G., Nevatia, R.: Matching images using linear features. IEEE Trans. Pattern Anal. Mach. Intell. 6(6), 675–685 (1984)CrossRefGoogle Scholar
  14. 14.
    Vigneron, A.: Geometric optimization and sums of algebraic functions. ACM Trans. Algorithms 10(1), 4:1–4:20 (2014)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Yon, J., Cheng, S., Cheong, O., Vigneron, A.: Finding largest common point sets. Int. J. Comput. Geom. Appl. 27(3), 177–186 (2017)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Electrical and Computer EngineeringUNISTUlsanRepublic of Korea

Personalised recommendations