Understanding Chromatin Structure: Efficient Computational Implementation of Polymer Physics Models

  • Simona Bianco
  • Carlo Annunziatella
  • Andrea Esposito
  • Luca Fiorillo
  • Mattia Conte
  • Raffaele Campanile
  • Andrea M. ChiarielloEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11339)


In recent years the development of novel technologies, as Hi-C or GAM, allowed to investigate the spatial structure of chromatin in the cell nucleus with a constantly increasing level of accuracy. Polymer physics models have been developed and improved to better interpret the wealth of complex information coming from the experimental data, providing highly accurate understandings on chromatin architecture and on the mechanisms regulating genome folding. To investigate the capability of the models to explain the experiments and to test their agreement with the data, massive parallel simulations are needed and efficient algorithms are fundamental. In this work, we consider general computational Molecular Dynamics (MD) techniques commonly used to implement such models, with a special focus on the Strings & Binders Switch polymer model. By combining this model with machine learning computational approaches, it is possible to give an accurate description of real genomic loci. In addition, it is also possible to make predictions about the impact of structural variants of the genomic sequence, which are known to be linked to severe congenital diseases.


Molecular dynamics Chromatin Polymer physics 


  1. 1.
    Misteli, T.: Beyond the sequence: cellular organization of genome function. Cell 128, 787–800 (2007)CrossRefGoogle Scholar
  2. 2.
    Lanctôt, C., Cheutin, T., Cremer, M., Cavalli, G., Cremer, T.: Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nat. Rev. Genet. 8, 104–115 (2007)CrossRefGoogle Scholar
  3. 3.
    Bickmore, W.A., van Steensel, B.: Genome architecture: domain organization of interphase chromosomes. Cell 152(6), 1270–1284 (2013)CrossRefGoogle Scholar
  4. 4.
    Tanay, A., Cavalli, G.: Chromosomal domains: epigenetic contexts and functional implications of genomic compartmentalization. Curr. Opin. Genet. Dev. 23, 197–203 (2013)CrossRefGoogle Scholar
  5. 5.
    Dekker, J., Mirny, L.: 3D genome as moderator of chromosomal communication. Cell 164(6), 1110–1121 (2016)CrossRefGoogle Scholar
  6. 6.
    Lieberman-Aiden, E., et al.: Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009)CrossRefGoogle Scholar
  7. 7.
    Beagrie, R., et al.: Complex multi-enhancer contacts captured by genome architecture mapping. Nature 543(7646), 519–524 (2017)CrossRefGoogle Scholar
  8. 8.
    Dixon, J.R., et al.: Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012)CrossRefGoogle Scholar
  9. 9.
    Nora, E.P., et al.: Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485, 381–385 (2012)CrossRefGoogle Scholar
  10. 10.
    Fraser, J., Ferrai, C., Chiariello, A.M., et al.: Hierarchical folding and reorganisation of chromosomes are linked to transcriptional changes during cellular differentiation. Mol. Syst. Biol. 11, 852 (2015)CrossRefGoogle Scholar
  11. 11.
    Chiariello, A.M., et al.: The scaling features of the 3D organization are highlighted by a transformation à la Kadanoff on HiC data. EPL 120, 40004 (2017)CrossRefGoogle Scholar
  12. 12.
    Sexton, T., et al.: Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 148, 458–472 (2012)CrossRefGoogle Scholar
  13. 13.
    Phillips-Cremins, J.E., et al.: Architectural protein subclasses shape 3D organization of genomes during lineage commitment. Cell 153, 1281–1295 (2013)CrossRefGoogle Scholar
  14. 14.
    Rao, S.S.P., et al.: A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014)CrossRefGoogle Scholar
  15. 15.
    Barbieri, M., et al.: Active and poised promoter states drive folding of the extended HoxB locus in mouse embryonic stem cells. Nat. Struct. Mol. Biol. 24, 515–524 (2017)CrossRefGoogle Scholar
  16. 16.
    Lupiáñez, D.G., Kraft, K., Heinrich, V., et al.: Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell 161(5), 1012–1025 (2015)CrossRefGoogle Scholar
  17. 17.
    Bianco, S., et al.: Polymer physics predicts the effects of structural variants on chromatin architecture. Nat. Gen. 50, 662–667 (2018)CrossRefGoogle Scholar
  18. 18.
    Emanuel, M., Radja, N.H., Henriksson, A., Schiessel, H.: The physics behind the larger scale organization of DNA in eukaryotes. Phys. Biol. 6, 025008 (2009)CrossRefGoogle Scholar
  19. 19.
    Tark-Dame, M., van Driel, R., Heermann, D.W.: Chromatin folding–from biology to polymer models and back. J. Cell Sci. 124, 839–845 (2011)CrossRefGoogle Scholar
  20. 20.
    Barbieri, M., Scialdone, A., Gamba, A., Pombo, A., Nicodemi, M.: Polymer physics, scaling and heterogeneity in the spatial organisation of chromosomes in the cell nucleus. Soft Matter 9, 8631–8635 (2013)CrossRefGoogle Scholar
  21. 21.
    Nicodemi, M., Pombo, A.: Models of chromosome structure. Curr. Opin. Cell Biol. 28, 90–95 (2014)CrossRefGoogle Scholar
  22. 22.
    Nicodemi, M., Prisco, A.: Thermodynamic pathways to genome spatial organization in the cell nucleus. Biophys. J. 96, 2168–2177 (2009)CrossRefGoogle Scholar
  23. 23.
    Barbieri, M., et al.: Complexity of chromatin folding is captured by the strings and binders switch model. Proc. Natl. Acad. Sci. U.S.A. 109, 16173–16178 (2012)CrossRefGoogle Scholar
  24. 24.
    Bohn, M., Heermann, D.W.: Diffusion-driven looping provides a consistent framework for chromatin organization. PLoS ONE 5(8), e12218 (2010)CrossRefGoogle Scholar
  25. 25.
    Sanborn, A.L., Rao, S.S.P., Huang, S.-C., et al.: Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc. Natl. Acad. Sci. U.S.A. 112, E6456–E6465 (2015)CrossRefGoogle Scholar
  26. 26.
    Fudenberg, G., Imakaev, M., Lu, C., et al.: Formation of chromosomal domains by loop extrusion. Cell Rep. 15, 1–12 (2016)CrossRefGoogle Scholar
  27. 27.
    Brackley, C.A., et al.: Nonequilibrium chromosome looping via molecular slip links. Phys. Rev. Lett. 108, 158103 (2017)Google Scholar
  28. 28.
    Chiariello, A.M., Annunziatella, C., Bianco, S., Esposito, A., Nicodemi, M.: Polymer physics of chromosome large-scale 3d organization. Sci. Rep. 6, 29775 (2016)CrossRefGoogle Scholar
  29. 29.
    Annunziatella, C., Chiariello, A.M., Bianco, S., Nicodemi, M.: Polymer models of the hierarchical folding of the Hox-B chromosomal locus. Phys. Rev. E 94, 042402 (2016)CrossRefGoogle Scholar
  30. 30.
    Rosa, A., Everaers, R.: Structure and dynamics of interphase chromosomes. PLoS Comput. Biol. 4, e1000153 (2008)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Brackley, C.A., Taylor, S., Papantonis, A., Cook, P.R., Marenduzzo, D.: Nonspecific bridging-induced attraction drives clustering of DNA-binding proteins and genome organization. Proc. Natl. Acad. Sci. U.S.A. 110, E3605–E3611 (2013)CrossRefGoogle Scholar
  32. 32.
    Jost, D., Carrivain, P., Cavalli, G., Vaillant, C.: Modeling epigenome folding: formation and dynamics of topologically associated chromatin domains. Nucleic Acids Res. 42, 9553–9561 (2014)CrossRefGoogle Scholar
  33. 33.
    Annunziatella, C., Chiariello, A.M., Esposito, A., Bianco, S., Fiorillo, L., Nicodemi, M.: Molecular dynamics simulations of the strings and binders switch model of chromatin. Methods 142, 81–88 (2018)CrossRefGoogle Scholar
  34. 34.
    Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Oxford University Press, Oxford (1987)zbMATHGoogle Scholar
  35. 35.
    de Gennes, P.G.: Scaling Concepts in Polymer Physics. Cornel University Press, Ithaca (1979)Google Scholar
  36. 36.
    Kremer, K., Grest, G.S.: Dynamics of entangled linear polymer melts: a molecular-dynamics simulation. J. Chem. Phys. 92(8), 5057–5086 (1990)CrossRefGoogle Scholar
  37. 37.
    Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995)CrossRefGoogle Scholar
  38. 38.
    Bianco, S., Chiariello, A.M., Annunziatella, C., Esposito, A., Nicodemi, M.: Predicting chromatin architecture from models of polymer physics. Chromosome Res. 25, 25–34 (2017)CrossRefGoogle Scholar
  39. 39.
    Chiariello, A.M., et al.: A polymer physics investigation of the architecture of the murine orthologue of the 7q11.23 human locus. Front. Neurosci. 11, 559 (2017)CrossRefGoogle Scholar
  40. 40.
    Franke, M., et al.: Formation of new chromatin domains determines pathogenicity of genomic duplications. Nature 538(7624), 265–269 (2016)CrossRefGoogle Scholar
  41. 41.
    Dekker, J., et al.: The 4D nucleome project. Nature 549, 219–226 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Dipartimento di FisicaUniversità di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant’AngeloNaplesItaly
  2. 2.Berlin Institute for Medical Systems Biology, Max-Delbrück Centre (MDC) for Molecular MedicineBerlin-BuchGermany

Personalised recommendations