Exploiting Community Detection to Recommend Privacy Policies in Decentralized Online Social Networks

  • Andrea De SalveEmail author
  • Barbara Guidi
  • Andrea Michienzi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11339)


The usage of Online Social Networks (OSNs) has become a daily activity for billions of people that share their contents and personal information with the other users. Regardless of the platform exploited to provide the OSNs’ services, these contents’ sharing could expose the OSNs’ users to a number of privacy risks if proper privacy-preserving mechanisms are not provided. Indeed, users must be able to define its own privacy policies that are exploited by the OSN to regulate access to the shared contents. To reduce such users’ privacy risks, we propose a Privacy Policies Recommended System (PPRS) that assists the users in defining their own privacy policies. Besides suggesting the most appropriate privacy policies to end users, the proposed system is able to exploits a certain set of properties (or attributes) of the users to define permissions on the shared contents. The evaluation results based on real OSN dataset show that our approach classifies users with a higher accuracy by recommending specific privacy policies for different communities of the users’ friends.


Decentralized online social networks Recommendation system Privacy Privacy policies Security 


  1. 1.
    Bielenberg, A., Helm, L., Gentilucci, A., Stefanescu, D., Zhang, H.: The growth of diaspora - a decentralized online social network in the wild. In: INFOCOM Workshops, pp. 13–18. IEEE (2012)Google Scholar
  2. 2.
    Conti, M., De Salve, A., Guidi, B., Pitto, F., Ricci, L.: Trusted dynamic storage for dunbar-based P2P online social networks. In: Meersman, R., et al. (eds.) OTM 2014. LNCS, vol. 8841, pp. 400–417. Springer, Heidelberg (2014). Scholar
  3. 3.
    Coscia, M., Rossetti, G., Giannotti, F., Pedreschi, D.: Demon: a local-first discovery method for overlapping communities. In: Proceedings of the 18th ACM KDD, pp. 615–623 (2012)Google Scholar
  4. 4.
    Cutillo, L.A., Molva, R., Strufe, T.: Safebook: a privacy-preserving online social network leveraging on real-life trust. IEEE Commun. Mag. 47(12), 94–101 (2009)CrossRefGoogle Scholar
  5. 5.
    De Salve, A., Dondio, M., Guidi, B., Ricci, L.: The impact of user’s availability on on-line ego networks: a facebook analysis. Comput. Commun. 73, 211–218 (2016)CrossRefGoogle Scholar
  6. 6.
    De Salve, A., Guidi, B., Ricci, L.: Evaluation of structural and temporal properties of ego networks for data availability in DOSNs. Mob. Netw. Appl. 23(1), 155–166 (2018)CrossRefGoogle Scholar
  7. 7.
    De Salve, A., Mori, P., Ricci, L.: Evaluating the impact of friends in predicting user’s availability in online social networks. In: Guidotti, R., Monreale, A., Pedreschi, D., Abiteboul, S. (eds.) PAP 2017. LNCS, vol. 10708, pp. 51–63. Springer, Cham (2017). Scholar
  8. 8.
    De Salve, A., Mori, P., Ricci, L.: A survey on privacy in decentralized online social networks. Comput. Sci. Rev. 27, 154–176 (2018)CrossRefGoogle Scholar
  9. 9.
    De Salve, A., Mori, P., Ricci, L., Al-Aaridhi, R., Graffi, K.: Privacy-preserving data allocation in decentralized online social networks. In: Jelasity, M., Kalyvianaki, E. (eds.) DAIS 2016. LNCS, vol. 9687, pp. 47–60. Springer, Cham (2016). Scholar
  10. 10.
    Dunbar, R.: The social brain hypothesis. Brain 9(10), 178–190 (1998)Google Scholar
  11. 11.
    Gao, H., Hu, J., Huang, T., Wang, J., Chen, Y.: Security issues in online social networks. IEEE Internet Comput. 15(4), 56–63 (2011)CrossRefGoogle Scholar
  12. 12.
    Guidi, B., Amft, T., De Salve, A., Graffi, K., Ricci, L.: DiDuSoNet: A P2P architecture for distributed dunbar-based social networks. Peer-to-Peer Netw. Appl. 9(6), 1177–1194 (2016)CrossRefGoogle Scholar
  13. 13.
    Guidi, B., Michienzi, A., Rossetti, G.: Dynamic community analysis in decentralized online social networks. In: Heras, D.B., Bougé, L. (eds.) Euro-Par 2017. LNCS, vol. 10659, pp. 517–528. Springer, Cham (2018). Scholar
  14. 14.
    Landis, J.R., Koch, G.G.: The measurement of observer agreement for categorical data. Biometrics 33, 159–174 (1977)CrossRefGoogle Scholar
  15. 15.
    Mislove, A., Viswanath, B., Gummadi, K.P., Druschel, P.: You are who you know: inferring user profiles in online social networks. In: Proceedings of the third ACM International Conference on Web search and Data mining, pp. 251–260 (2010)Google Scholar
  16. 16.
    Quinlan, J.R.: C4. 5: Programs for Machine Learning. Elsevier, Amsterdam (2014)Google Scholar
  17. 17.
    Yeung, C.-m.A., Liccardi, I., Lu, K., Seneviratne, O., Berners-Lee, T.: Decentralization: the future of online social networking. In: W3C Workshop on the Future of Social Networking Position Papers, vol. 2, pp. 2–7 (2009)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Andrea De Salve
    • 1
    Email author
  • Barbara Guidi
    • 2
  • Andrea Michienzi
    • 2
  1. 1.Istituto di Informatica e Telematica, Consiglio Nazionale delle RicerchePisaItaly
  2. 2.Department of Computer ScienceUniversity of PisaPisaItaly

Personalised recommendations