The Drivers Behind Blockchain Adoption: The Rationality of Irrational Choices

  • Tommy KoensEmail author
  • Erik Poll
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11339)


There has been a huge increase in interest in blockchain technology. However, little is known about the drivers behind the adoption of this technology. In this paper we identify and analyze these drivers, using three real-world and representative scenarios. We confirm in our analysis that blockchain is not an appropriate technology for some scenarios, from a purely technical point of view. The choice for blockchain technology in such scenarios may therefore seem as an irrational choice. However, our analysis reveals that there are non-technical drivers at play that drive the adoption of blockchain, such as philosophical beliefs, network effects, and economic incentives. These non-technical drivers may explain the rationality behind the choice for blockchain adoption.


Blockchain Distributed ledger Technical drivers Non-technical drivers 


  1. 1.
    Liao, S.: Tea, juice, and vape companies add ‘blockchain’ to their names to profit on bitcoin mania.
  2. 2.
    McDermott, J.: Company stock prices have been going up every time they even mention using blockchain.
  3. 3.
    Baur, A.W., Bühler, J., Bick, M., Bonorden, C.S.: Cryptocurrencies as a disruption? Empirical findings on user adoption and future potential of Bitcoin and co. In: Janssen, M., et al. (eds.) I3E 2015. LNCS, vol. 9373, pp. 63–80. Springer, Cham (2015). Scholar
  4. 4.
    Buterin, V.: Ethereum scalability research and development subsidy programs.
  5. 5.
    Cachin, C.: Architecture of the hyperledger blockchain fabric. In: Workshop on Distributed Cryptocurrencies and Consensus Ledgers, July 2016Google Scholar
  6. 6.
    Carter, L., Ubacht, J.: Blockchain applications in government. In: Proceedings of the 19th Annual International Conference on Digital Government Research: Governance in the Data Age, p. 126. ACM (2018)Google Scholar
  7. 7.
    Dauda, S.Y., Lee, J.: Technology adoption: a conjoint analysis of consumers preference on future online banking services. Inf. Syst. 53, 1–15 (2015)CrossRefGoogle Scholar
  8. 8.
    Davis, F.D.: A Technology Acceptance Model for Empirically Testing New End-User Information Systems: Theory and Results. Ph.D. thesis, Massachusetts Institute of Technology (1985)Google Scholar
  9. 9.
    Debabrata, G., Albert, T.: A Framework for implementing blockchain technologies to improve supply chain performance (2018).
  10. 10.
    Folkinshteyn, D., Lennon, M.: Braving Bitcoin: a technology acceptance model (TAM) analysis. J. Inf. Technol. Case Appl. Res. 18(4), 220–249 (2016)Google Scholar
  11. 11.
    Ge, L., et al.: Blockchain for agriculture and food. No. 2017–112, Wageningen Economic Research (2017)Google Scholar
  12. 12.
    Gencer, A.E., Basu, S., Eyal, I., van Renesse, R., Sirer, E.G.: Decentralization in Bitcoin and ethereum networks. arXiv preprint arXiv:1801.03998 (2018)
  13. 13.
    Glaser, F., Zimmermann, K., Haferkorn, M., Weber, M., Siering, M.: Bitcoin - asset or currency? Revealing users’ hidden intentions. In: Proceedings of the 22nd European Conference on Information Systems, Tel Aviv, June 2013Google Scholar
  14. 14.
    Hsu, C.L., Lu, H.P.: Why do people play on-line games? An extended TAM with social influences and flow experience. Inf. Manag. 41(7), 853–868 (2004)CrossRefGoogle Scholar
  15. 15.
    Liang, X., Shetty, S., Tosh, D., Kamhoua, C., Kwiat, K., Njilla, L.: Provchain: a blockchain-based data provenance architecture in cloud environment with enhanced privacy and availability. In: Proceedings of the 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, pp. 468–477. IEEE Press (2017)Google Scholar
  16. 16.
    Mattila, J., Seppälä, T., Holmström, J.: Product-centric information management: a case study of a shared platform with blockchain technology (2016)Google Scholar
  17. 17.
    Maull, R., Godsiff, P., Mulligan, C., Brown, A., Kewell, B.: Distributed ledger technology: applications and implications. Strat. Chang. 26(5), 481–489 (2017)CrossRefGoogle Scholar
  18. 18.
    Mayer, R.C., Davis, J.H., Schoorman, F.D.: An integrative model of organizational trust. Acad. Manag. Rev. 20(3), 709–734 (1995)CrossRefGoogle Scholar
  19. 19.
    McKnight, D.H., Chervany, N.L.: What is trust? A conceptual analysis and an interdisciplinary model. In: AMCIS 2000 Proceedings, p. 382 (2000)Google Scholar
  20. 20.
    Meunier, S.: When do you need blockchain? Decision models.
  21. 21.
    Möser, M.: Anonymity of Bitcoin transactions: an analysis of mixing services. In: Proceedings of Münster Bitcoin Conference (2013)Google Scholar
  22. 22.
    Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008).
  23. 23.
    O’Dwyer, K.J., Malone, D.: Bitcoin mining and its energy footprint. In: Proceedings of the Irish Signals and Systems Conference, pp. 280–285 (2014)Google Scholar
  24. 24.
    Omran, Y., Henke, M., Heines, R., Hofmann, E.: Blockchain-driven supply chain finance: towards a conceptual framework from a buyer perspective (2017).
  25. 25.
    Peck, M.E.: Blockchain world-do you need a blockchain? This chart will tell you if the technology can solve your problem. IEEE Spectr. 54(10), 38–60 (2017)CrossRefGoogle Scholar
  26. 26.
    Perlman, R.: Blockchain: hype or hope? Login 42(2), 68–72 (2017)Google Scholar
  27. 27.
    Peters, G.W., Panayi, E.: Understanding modern banking ledgers through blockchain technologies: future of transaction processing and smart contracts on the internet of money. In: Tasca, P., Aste, T., Pelizzon, L., Perony, N. (eds.) Banking Beyond Banks and Money. NEW, pp. 239–278. Springer, Cham (2016). Scholar
  28. 28.
    Pilkington, M.: 11 blockchain technology: principles and applications. In: Research Handbook on Digital Transformations, p. 225 (2016)Google Scholar
  29. 29.
    Pop, C., Cioara, T., Antal, M., Anghel, I., Salomie, I., Bertoncini, M.: Blockchain based decentralized management of demand response programs in smart energy grids. Sensors 18(1), 162 (2018)CrossRefGoogle Scholar
  30. 30.
    Ron, D., Shamir, A.: Quantitative analysis of the full Bitcoin transaction graph. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 6–24. Springer, Heidelberg (2013). Scholar
  31. 31.
    SABS Standards Division: South African National Standard, Organic Agriculture - Production and Processing.
  32. 32.
    Seebacher, S., Schüritz, R.: Blockchain technology as an enabler of service systems: a structured literature review. In: Za, S., Drăgoicea, M., Cavallari, M. (eds.) IESS 2017. LNBIP, vol. 279, pp. 12–23. Springer, Cham (2017). Scholar
  33. 33.
    Swan, M.: Blockchain: Blueprint for a New Economy. O’Reilly Media Inc., Sebastopol (2015)Google Scholar
  34. 34.
    Swartz, L.: blockchain dreams: imagining techno-economic alternatives after Bitcoin. In: Another Economy Is Possible: Culture and Economy in a Time of Crisis, pp. 82–105. Polity Cambridge (2017)Google Scholar
  35. 35.
    Underwood, S.: Blockchain beyond Bitcoin. Commun. ACM 59(11), 15–17 (2016)CrossRefGoogle Scholar
  36. 36.
    uPort: Open identity system for the decentralized web.
  37. 37.
    Urquhart, A.: Price clustering in bitcoin. Econ. Lett. 159, 145–148 (2017)CrossRefGoogle Scholar
  38. 38.
    Wood, G.: Ethereum: a secure decentralised generalised transaction ledger. Ethereum Proj. Yellow Pap. 151, 1–32 (2014)Google Scholar
  39. 39.
    Wüst, K., Gervais, A.: Do you need a blockchain? IACR Cryptology ePrint Archive 2017, 375 (2017)Google Scholar
  40. 40.
    Yli-Huumo, J., Ko, D., Choi, S., Park, S., Smolander, K.: Where is current research on blockchain technology? A systematic review. PloS one 11(10), e0163477 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Radboud UniversityNijmegenThe Netherlands

Personalised recommendations