Enzyme-Mediated Enhanced Biogas Yield

  • Thamarys ScapiniEmail author
  • Aline Frumi Camargo
  • Fábio Spitza Stefanski
  • Natalia Klanovicz
  • Rafaela Pollon
  • Jessica Zanivan
  • Gislaine Fongaro
  • Helen Treichel
Part of the Biofuel and Biorefinery Technologies book series (BBT, volume 9)


Enzymes are biocatalysts present in all living cells and have main function to perform the processes of breaking down complex nutrients into simple nutrients for cellular assimilation. Enzymatic catalysis has advantages over chemical catalysis due to high enzymatic specificity and moderate reaction conditions. Of great industrial interest, the enzymes can be applied in increasing the yield of compound production or in the degradation of unwanted by-products and these characteristics make the knowledge of enzymatic catalysis in biogas production extremely relevant, since the traditional method of biogas production is based on the biodegradation of organic matter by anaerobic digestion, which is produced by the action of a variety of microorganisms and enzymes. In the production of biogas, enzyme-mediated degradation may be the key to a higher quality final product, acting in the steps of hydrolysis, acidogenesis, acetogenesis and methanogenesis, and in the identification of by-products of enzymatic catalysis that may inhibit the process. In this context, the present chapter will be addressed: (i) introduction of enzymes in anaerobic biodigestion; (ii) enzymes as a mediator of biogas yield; (iii) inhibition of biogas production and biodegradability.


Bioprocess Biotechnology Anaerobic digestion Biogas upgrading 


  1. Abdelsalam E, Samer M, Attia YA, Abdel-Hadi MA, Hassan HE, Badr Y (2017) Effects of Co and Ni nanoparticles on biogas and methane production from anaerobic digestion of slurry. Energy Convers Manag 141:108–119CrossRefGoogle Scholar
  2. Abdel-Shafy HI, Mansour MSM (2014) Biogas production as affected by heavy metals in the anaerobic digestion of sludge. Egypt J Petrol 23:409–417CrossRefGoogle Scholar
  3. Abedi D, Zhang L, Pyne M, Perry Chou C (2011) Enzyme biocatalysis, chap 1. In: Comprehensive biotechnology, pp 15–24CrossRefGoogle Scholar
  4. Achinas S, Achinas V, Jan G, Euverinka W (2017) A technological overview of biogas production from biowaste. Engineering 3:299–307CrossRefGoogle Scholar
  5. Ács N, Bagi Z, Rákhely G, Minárovics J, Nagy K, Kovács KL (2015) Bioaugmentation of biogas production by a hydrogen-producing bacterium. Biores Technol 186:286–293CrossRefGoogle Scholar
  6. Ahmadi N, Darani KK, Mortazavian AM (2017) An overview of biotechnological production of propionic acid: from upstream to downstream processes. Eletron J Biotechnol 28:67–75CrossRefGoogle Scholar
  7. Al Seadi T, Rutz D, Prassl H, Köttner M, Finsterwalder T, Volk S, Janssen R (2008) Biogas handbook. University of Southern Denmark Esbjerg, Niels BohrsGoogle Scholar
  8. Amha YM, Anwar MZ, Brower A, Jacobsen CS, Stadler LB, Webster TM, Smith AL (2018) Inhibition of anaerobic digestion processes: application of molecular tools. Biores Technol 247:999–1014CrossRefGoogle Scholar
  9. Aronson EL, Allison SD, Helliker BR (2013) Environmental impacts on the diversity of methane-cycling microbes and their resultant function. Front Microbiol 4Google Scholar
  10. Azman S, Khadem AF, Van Lier JB, Zeeman G, Plugge CM (2015) Presence and role of anaerobic hydrolytic microbes in conversion of lignocellulosic biomass for biogas production. Crit Rev Environ Sci Technol 45:2523–2564CrossRefGoogle Scholar
  11. Azman S, Khadem AF, Plugge CM, Stams AJ, Bec S, Zeeman G (2017) Effect of humic acid on anaerobic digestion of cellulose and xylan in completely stirred tank reactors: inhibitory effect, mitigation of the inhibition and the dynamics of the microbial communities. Appl Microbiol Biotechnol 101:889–901CrossRefGoogle Scholar
  12. Baserba MG, Angelidaki I, Karakashev D (2012) Effect of continuous oleate addition on microbial communities involved in anaerobic digestion process. Biores Technol 106:74–81CrossRefGoogle Scholar
  13. Batstone DJ, Keller J, Angelidaki I, Kalyuzhnyi SV, Pavlostathis SG, Rozzi A, Sanders WTM, Siegrist H, Vavilin VA (2002) The IWA anaerobic digestion model no. 1 (ADM1). Water Sci Technol 45(10):65–73CrossRefGoogle Scholar
  14. Bensaid S, Ruggeri B, Saracco G (2015) Development of a photosynthetic microbial electrochemical cell (PMEC) reactor coupled with dark fermentation of organic wastes: medium term perspectives. Energies 8:399–429CrossRefGoogle Scholar
  15. Bharathiraja B, Sudhargarsana T, Jayamuthunagai J, Praveenkumar R, Chozhavendhan S, Iyyappab J (2018) Biogas production—a review on composition, fuel properties, feed stock and principles of anaerobic digestion. Renew Sustain Energy Rev 90:570–582CrossRefGoogle Scholar
  16. Brémond U, Buyer R, Steyer J, Bernet N, Carrere H (2018) Biological pretreatments of biomass for improving biogas production: an overview from lab scale to full-scale. Renew Sustain Energy Rev 90:583–604CrossRefGoogle Scholar
  17. Buyukkamaci N, Filibeli A (2004) Volatile fatty acid formation in an anaerobic hybrid reactor. Process Biochem 39:1491–1494CrossRefGoogle Scholar
  18. Carlier JP, Marchandin H, Jumas-Bilak E, Lorin V, Henry C, Carrièrre C, Jean-Pierre H (2002) Anaeroglobus geminatus gen. nov., sp. nov., a novel member of the Family Veillonellaceae. Int J Syst Evol Microbiol 52:983–986Google Scholar
  19. Cazier EA, Trably E, Steyer JP, Escudié R (2015) Biomass hydrolysis inhibition at high hydrogen partial pressure in solid-state anaerobic digestion. Biores Technol 190:106–113CrossRefGoogle Scholar
  20. Chaganti SR, Kim D-H, Lalman JA (2011) Flux balance analysis of mixed anaerobic microbial communities: effects of linoleic acid (LA) and pH on biohydrogen production. Int J Hydrogen Energy 36:14141–14152CrossRefGoogle Scholar
  21. Chen X, Sun Y, Xiu Z, Li X, Zhang D (2006) Stoichiometric analysis of biological hydrogen production by fermentative bacteria. Int J Hydrogen Energy 31:539–549CrossRefGoogle Scholar
  22. Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Biores Technol 99:4044–4064CrossRefGoogle Scholar
  23. Chen Y, Luo J, Yan Y, Feng L (2013) Enhanced production of short-chain fatty acid by co-fermentation of waste activated sludge and kitchen waste under alkaline conditions and its application to microbial fuel cells. Appl Energy 102:1197–1204CrossRefGoogle Scholar
  24. Chen JL, Ortiz R, Steele TWJ, Stuckey DC (2014) Toxicants inhibiting anaerobic digestion: a review. Biotechnol Adv 32:1523–1534CrossRefGoogle Scholar
  25. Chen C, Guo W, Ngo HH, Lee D, Tung K, Jin P, Wang J, Wu Y (2016) Challenges in biogas production from anaerobic membrane bioreactors. Renewable Energy 98:120–134CrossRefGoogle Scholar
  26. Choi J, Han S, Kim H (2015) Industrial applications of enzyme biocatalysis: current status and future aspects. Biotechnol Adv 33(7):1443–1454CrossRefGoogle Scholar
  27. Chojnacka A, Szczęsny P, Błaszczyk MK, Zielenkiewicz U, Detman A, Salamon A, Sikora A (2015) Noteworthy facts about a methane-producing microbial community processing acidic effluent from sugar beet molasses fermentation. PLoS ONE 10Google Scholar
  28. Chotwattanasak J, Puetpaiboon U (2011) Full scale anaerobic digester for treating palm oil mill wastewater. J Sustain Energy Environ 2:133–136Google Scholar
  29. Christy PM, Gopinath LR, Divya D (2014) A review on anaerobic decomposition and enhancement of biogas production through enzymes and microorganisms. Renew Sustain Energy Rev 34:167–173CrossRefGoogle Scholar
  30. Collins MD, Falsen E, Akervall E, Sooden B, Alvarez A (1998) Corynebacterium kroppenstedtii sp. nov., a novel Corynebacterium that does not contain mycolic acids. Int J Syst Bacteriol 48:1449–1454CrossRefGoogle Scholar
  31. Cooney M, Maynard N, Cannizzaro C, Benemann J (2007) Two-phase anaerobic digestion for production of hydrogen-methane mixtures. Biores Technol 98:2641–2651CrossRefGoogle Scholar
  32. Coral J, Karp SG, Vandenberghe LPS, Parada JL, Pandey A, Soccol CR (2008) Batch fermentation model of propionic acid production by propionibacterium acidipropionici in different carbon sources. Appl Biochem Biotechnol 151:333–341CrossRefGoogle Scholar
  33. De Bok FAM, Stams AJM, Dijkema C, Boone DR (2001) Pathway of propionate oxidation by a syntrophic culture of Smithella propionica and Methanospirillum hungatei. Appl Environ Microbiol 67(4):1800–1804CrossRefGoogle Scholar
  34. Dereli RK, Ersahin ME, Ozgun H, Ozturk I, Jeison D, Van der Zee FP, Van Lier JB (2012) Potentials of anaerobic membrane bioreactors to overcome treatment limitations induced by industrial wastewaters. Biores Technol 122:160–170CrossRefGoogle Scholar
  35. Desbois AP, Smith VJ (2010) Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Appl Microbiol Biotechnol 85:1629–1642CrossRefGoogle Scholar
  36. Dong X, Plugge CM, Stams AJM (1994) Anaerobic degradation of propionate by a mesophilic acetogenic bacterium in coculture and triculture with different methanogens. Appl Environ Microbiol 60:2834–2838Google Scholar
  37. FAO Agricultural Services Bulletin—128 (1997) Methane production. In: Renewable biological systems for alternative sustainable energy production. ISBN 92-5-104059-1Google Scholar
  38. Ferry JG (2011) Acetate kinase and phosphotransacetylase. In: Methods in enzymology, vol 494CrossRefGoogle Scholar
  39. Fotidis IA, Karakashev D, Angelidaki I (2014) The dominant acetate degradation pathway/methanogenic composition in full-scale anaerobic digesters operating under different ammonia levels. Int J Environ Sci Technol 11:2087–2094Google Scholar
  40. Fournier GP, Gogarten JP (2007) Evolution of acetoclastic methanogenesis in Methanosarcina via horizontal gene transfer from cellulolytic Clostridia. J Bacteriol 190(3):1124–1127CrossRefGoogle Scholar
  41. Garvie EI (1980) Bacterial lactate dehydrogenases. Microbiol Rev 44:106–139Google Scholar
  42. Gerardi MH (2003) The microbiology of anaerobic digesters. In: Wastewater microbiology series. Wiley, 177 pGoogle Scholar
  43. Girbal L, Soucaille P (1994) Regulation of Clostridium acetobutylicum metabolism as revealed by mixed-substrate steady-state continuous cultures: role of NADH/NAD ratio and ATP pool. J Bacteriol 176:6433–6438CrossRefGoogle Scholar
  44. Girbal L, Vasconcelos I, Saint-Amans S, Soucaille P (1995) How neutral red modified carbon and electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH. FEMS Microbiol Rev 16:151–162CrossRefGoogle Scholar
  45. Gonzalo G, Colpa DI, Habib DI, Fraaije MW (2016) Bacterial enzymes involved in lignin degradation. J Biotechnol 236:110–119CrossRefGoogle Scholar
  46. Graham DE, White RH (2001) Elucidation of methanogenic coenzyme biosyntheses: from spectroscopy to genomics. Nat Prod Rep 19(2):133–147MathSciNetCrossRefGoogle Scholar
  47. Grochowski LL, White RH (2010) Biosynthesis of the methanogenic coenzymes. In: Comprehensive natural products II, pp 711–748CrossRefGoogle Scholar
  48. Guedon E, Desvaux M, Petitdemange H (2002) Improvement of cellulolytic properties of Clostridium cellulolyticum by metabolic engineering. Appl Environ Microbiol 68:53–58CrossRefGoogle Scholar
  49. Gupta KK, Aneja KR, Rana D (2016) Current status of cow dung as a bioresource for sustainable development. Biores Bioprocess 28:1–11Google Scholar
  50. Halpern J (1985) Mechanisms of coenzyme B12-dependent rearrangements. Science 227:869–875CrossRefGoogle Scholar
  51. Hoskins J, Alborn WE Jr, Arnold J, Blaszczak LC, Burgett S, DeHoff SB, Strem ST, Fritz L, Fu DJ, Fuller W, Geringer C, Gilmour R, Glass JS, Khoja H, Kraft AR, Lagace RE, LeBlanc DJ, Lee LN, Lefkowitz EJ, Lu J, Matshushima P, McAhren SM, McHenney M, McLeaster K, Mundy CW, Nicas TI, Norris FH, O’Gara M, Peery RB, Robertson GT, Rockey P, Sun PM, Winkler ME, Yang Y, Young-Bellido M, Zhao G, Zook CA, Baltz RH, Jaskunas SR, Rosteck PR Jr, Skatrud PL, Glass JI (2001) Genome of the bacterium Streptococcus pneumoniae strain R6. J Bacteriol 183:5709–5717CrossRefGoogle Scholar
  52. Houwen FP, Plokker J, Stams AJM, Zehder AJB (1990) Enzymatic evidence for involvement of the methyl-malonyl-CoA pathway in propionate oxidation by Syntrophobacter wolinii. Arch Microbiol 155:52–55CrossRefGoogle Scholar
  53. Huang KX, Huang S, Rudolph FB, Bennett GN (2000) Identification and characterization of a second butyrate kinase from Clostridium acetobutylicum ATCC 824. J Mol Microbiol Biotechnol 2:33–38Google Scholar
  54. Hussain AA, Abdel-Salam MS, Abo-Ghalia HH, Hegazy WK, Hafez SS (2017) Optimization and molecular identification of novel cellulose degrading bacteria isolated from Egyptian environment. J Genet Eng Biotechnol 15:77–85CrossRefGoogle Scholar
  55. Hwang S, Lee Y, Yang K (2001) Maximization of acetic acid production in partial acidogenesis of swine wastewater. Biotechnol Bioeng 75:521–529CrossRefGoogle Scholar
  56. Iannotti EL, Fischer JR, Sievers DM (1982) Characterization of bacteria from a swine manure digester. Appl Environ Microbiol 43:136–143Google Scholar
  57. Imachi H, Sakai S, Ohashi A, Harada H, Hanada S, Kamagata Y, Sekiguchi Y (2000) Cultivation and in situ detection of a thermophilic bacterium capable of oxidizing propionate in syntrophic association with hydrogenotrophic methanogens in a thermophilic methanogenic granular sludge. Appl Environ Microbiol 66:3608–3615CrossRefGoogle Scholar
  58. Imachi H, Sakai S, Ohashi A, Harada H, Hanada S, Kamagata Y, Sekiguchi Y (2002) Pelotomaculum thermopropionicum gen. nov., sp. nov., an anaerobic, thermophilic, syntrophic propionate-oxidizing bacterium. Int J Syst Evol Microbiol 52:1729–1735Google Scholar
  59. Imachi H, Sakai S, Ohashi A, Harada H, Hanada S, Kamagata Y, Sekiguchi Y (2008) Pelotomaculum propionicicum sp. nov., an anaerobic, mesophilic, obligately syntrophic, propionate-oxidizing bacterium. Int J Syst Evol Microbiol 57:1487–1492CrossRefGoogle Scholar
  60. Jackson BE, Bhupathiraju VK, Tanner RS, Woese CR, McInerney MJ (1999) Syntrophus aciditrophicus sp. nov., a new anaerobic bacterium that degrades fatty acids and benzoate in syntrophic association with hydrogen-using microorganisms. Arch Microbiol 171:107–114CrossRefGoogle Scholar
  61. Jha AK, Li J, Zhang L (2011) Research advances in dry anaerobic digestion process of solid organic wastes. Afr J Biotech 10(65):14242–14253CrossRefGoogle Scholar
  62. Kaji M, Taniguchi Y, Matsushita O, Katayama S, Miyata S, Morita S, Okabe A (1999) The hydA gene encoding the H2 evolving hydrogenase of Clostridium perfringens: molecular characterization and expression of the gene. FEMS Microbiol Lett 181:329–336CrossRefGoogle Scholar
  63. Kanai M, Ferre V, Wakahara S, Yamamoto T, Moro M (2010) A novel combination of methane fermentation and MBR—Kubota submerged anaerobic membrane bioreactor process. Desalination 250:964–967CrossRefGoogle Scholar
  64. Kandylis P, Bekatorou A, Pissaridi K, Lappa K, Dima A, Kanellaki M, Koutinas AA (2016) Acidogenesis of cellulosic hydrolysates for new generation biofuels. Biomass Bioenerg 91:210–216CrossRefGoogle Scholar
  65. Kolbl S, Forte-Tavčer P, Stres B (2017) Potential for valorization of dehydrated paper pulp sludge for biogas production: addition of selected hydrolytic enzymes in semi-continuous anaerobic digestion assays. Energy 126:326–334CrossRefGoogle Scholar
  66. Kosaka T, Uchiyama T, Ishii S, Enoki M, Imachi H, Kamagata Y, Ohashi A, Harada H, Ikenaga H, Watanabe K (2006) Reconstruction and regulation of the central catabolic pathway in the thermophilic propionate-oxidizing syntroph Pelotomaculum thermopropionicum. J Bacteriol 188(1):202–210CrossRefGoogle Scholar
  67. Lee HS, Salerno MB, Rittmann BE (2008) Thermodynamic evaluation on H2 production in glucose fermentation. Environ Sci Technol 42:2401–2407CrossRefGoogle Scholar
  68. Leigh JA (2011) Growth of methanogens under defined hydrogen conditions. In: Methods in enzymology, vol 494CrossRefGoogle Scholar
  69. Li Y (2013) An integrated study of microbial community in anaerobic digestion systems. The Ohio State University, Graduate Program in Environmental Science, 208 pGoogle Scholar
  70. Li J, Sun K, He J, Chen Q (2011) Using an amylase pretreatment of pig manure to enhance biogas production. National Engineering Center of Solid Waste Resources Recovery in Kunming University of Science and Technology.
  71. Li L, He Q, Ma Y, Wang X, Peng X (2015a) Dynamics of microbial community in a mesophilic anaerobic digester treating food waste: relationship between community structure and process stability. Biores Technol 189:113–120CrossRefGoogle Scholar
  72. Li X, Chen Y, Zhao S, Chen H, Zheng X, Luo JY, Liu Y (2015b) Efficient production of optically pure l-lactic acid from food waste at ambient temperature by regulating key enzyme activity. Water Res 70:148–157CrossRefGoogle Scholar
  73. Lim JT, Ge T, Tong YW (2018) Monitoring of microbial communities in anaerobic digestion sludge for biogas optimization. Waste Manag 71:334–341CrossRefGoogle Scholar
  74. Liu Y, Whitman WB (2008) Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann N Y Acad Sci 1125:171–189CrossRefGoogle Scholar
  75. Liu Y, Balkwill DL, Aldrich HC, Drake GR, Boone DR (1999) Characterization of the anaerobic propionate-degrading syntrophs Smithella propionica gen. nov., sp. nov. and Syntrophobacter wolinii. Int J Syst Bacteriol 49:545–556CrossRefGoogle Scholar
  76. Liu D, Liu D, Zeng RJ, Angelidaki I (2006) Hydrogen and methane production from household solid waste in the two-stage fermentation process. Water Res 40:2230–2236CrossRefGoogle Scholar
  77. Liu C, Yang J, Zhang S, Guo J, Li Z (2008) Bacterial diversity comparison of anaerobic sludge from full-scale wastewater treatment bioreactors. J Biotechnol 136:S610–S630CrossRefGoogle Scholar
  78. Ma J, Zhao QB, Laurens LLM, Jarvis EE, Nagle NJ, Chen S, Frear CS (2015) Mechanism, kinetics and microbiology of inhibition caused by long-chain fatty acids in anaerobic digestion of algal biomass. Biotechnol Biofuels 8:141CrossRefGoogle Scholar
  79. Mathai PP, Zitomer DH, Maki JS (2015) Quantitative detection of syntrophic fatty acid-degrading bacterial communities in methanogenic environments. Microbiology 161(6):1189–1197CrossRefGoogle Scholar
  80. McInerney MJ, Wofford NQ (1992) Enzymes involved in crotonate metabolism in Syntrophomonas wolfei. Arch Microbiol 158:344–349CrossRefGoogle Scholar
  81. McInerney MJ, Rohlin L, Mouttaki H, Kim U, Krupp RS, Rios-Hernandez L, Sieber JR, Struchtemeyer CG, Bhattacharyya A, Campbell JW, Gunsalus RP (2007) The genome of Syntrophus aciditrophicus: life at the thermodynamic limit of microbial growth. PNAS Microbiol 104(18):7600–7605CrossRefGoogle Scholar
  82. Müller N, Worm P, Schink B, Stams AJ, Plugge CM (2010) Syntrophic butyrate and propionate oxidation processes: from genomes to reaction mechanisms. Environ Microbiol Rep 2:489–499CrossRefGoogle Scholar
  83. Murray DW, Khan WA, van den Berg L (1982) Clostridium saccharolyticurn sp. nov., a saccharolytic species from sewage sludge. Int J Syst Bacteriol 32:132–135CrossRefGoogle Scholar
  84. Nodar R, Acea MJ, Carballas T (1992) Poultry slurry microbial population: composition and evolution during storage. Biores Technol 40:29–34CrossRefGoogle Scholar
  85. Otín CL, Bond JS (2008) Proteases: multifunctional enzymes in life and disease. J Biol Chem 283:30433–30437CrossRefGoogle Scholar
  86. Pereira MA, Pires OC, Mota M, Alves MM (2005) Anaerobic biodegradation of oleic and palmitic acids: evidence of mass transfer limitations caused by long chain fatty acid accumulation onto the anaerobic sludge. Biotechnol Bioeng 92:15–23CrossRefGoogle Scholar
  87. Plugge CM, Dijkema C, Stams AJM (1993) Acetyl-CoA cleavage pathway in a syntrophic propionate oxidizing bacterium growing on fumarate in the absence of methanogens. FEMS Microbiol Lett 110:71–76CrossRefGoogle Scholar
  88. Prasertsan P, Khangkhachit W, Duangsuwan W, Mamimin C, O-Thong S (2017) Direct hydrolysis of palm oil mill effluent by xylanase enzyme to enhance biogas production using two-steps thermophilic fermentation under non-sterile condition. Int J Hydrogen Energy 42:27759–27766CrossRefGoogle Scholar
  89. Ren N, Wang B, Huang JC (1997) Ethanol-type fermentation from carbohydrate in high rate acidogenic reactor. Biotechnol Bioeng 54:428–433CrossRefGoogle Scholar
  90. Rincón B, Portillo MC, González JM, Borja R (2013) Microbial community dynamics in the two-stage anaerobic digestion process of two-phase olive mill residue. Int J Environ Sci Technol 10:635–644CrossRefGoogle Scholar
  91. Rivera-Salvador V, López-Cruz IL, Espinosa-Solares T, Aranda-Barradas JS, Huber DH, Sharma D, Toledo JU (2014) Application of anaerobic digestion model no. 1 to describe the syntrophic acetate oxidation of poultry litter in thermophilic anaerobic digestion. Biores Technol 167:495–502CrossRefGoogle Scholar
  92. Ruiz-Sánchez J, Campanaro S, Guivernau M, Fernández B, Prenafeta-Boldú FX (2018) Effect of ammonia on the active microbiome and metagenome from stable full-scale digesters. Biores Technol 250:513–522CrossRefGoogle Scholar
  93. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring HarborGoogle Scholar
  94. Sanchez S, Demain AL (2017) Useful microbial enzymes—an introduction, chap 1. In: Biotechnology of microbial enzymes, pp 1–11Google Scholar
  95. Sarmiento FB, Leigh JA, Whitman WB (2011) Genetic systems for hydrogenotrophic methanogens. In: Methods in enzymology, vol 494CrossRefGoogle Scholar
  96. Sauer U, Eikmanns BJ (2005) The PEP-pyruvate-oxaloacetate node as the switch point for carbon flux distribution in bacteria. FEMS Microbiol Rev 29(4):765–794CrossRefGoogle Scholar
  97. Seedorf H, Fricke WF, Veith B, Brüggemann H, Liesegang H, Strittmatter A, Miethke M, Buckel W, Hinderberger J, Li F, Hagemeier C, Thauer RK, Gottschalk G (2008) The genome of Clostridium kluyveri, a strict anaerobe with unique metabolic features. Proc Nat Acad Sci USA 105:2128–2133CrossRefGoogle Scholar
  98. Selling R, Hakansson T, Bjornsson L (2008) Two-stage anaerobic digestion enables heavy metal removal. Water Sci Technol 57:553–558CrossRefGoogle Scholar
  99. Seon JY, Lee T, Lee SC, Pham HD, Woo HC, Song M (2014) Bacterial community structure in maximum volatile fatty acids production from alginate in acidogenesis. Biores Technol 157:22–27CrossRefGoogle Scholar
  100. Shah FA, Mahmood Q, Maroof Shah M, Pervez A, Ahmad Asad S (2014) Microbial ecology of anaerobic digesters: the key players of anaerobiosis. Sci World J 2014:1–21Google Scholar
  101. Sieber JR, Sims DR, Han C, Kim E, Lykidis A, Lapidus AL, McDonnald E, Rohlin L, Culley DE, Gunsalus R, McInerney MJ (2010) The genome of Syntrophomonas wolfei: new insights into syntrophic metabolism and biohydrogen production. Environ Microbiol 12(8):2289–2301Google Scholar
  102. Sillers R, Chow A, Tracy B, Papoutsakis ET (2008) Metabolic engineering of the non-sporulating, non-solventogenic Clostridium acetobutylicum strain M5 to produce butanol without acetone demonstrate the robustness of the acid-formation pathways and the importance of the electron balance. Metab Eng 10:321–332CrossRefGoogle Scholar
  103. Silva SA, Cavaleiro AJ, Pereira MA, Stams AJM, Alves MM, Sousa DZ (2014) Long-term acclimation of anaerobic sludges for high-rate methanogenesis from LCFA. Biomass Bioenergy 67:297–303CrossRefGoogle Scholar
  104. Silva FMS, Mahler CF, Oliveira LB, Bassin JP (2018) Hydrogen and methane production in a two-stage anaerobic digestion system by co-digestion of food waste, sewage sludge and glycerol. Waste Manag 76:339–349CrossRefGoogle Scholar
  105. Silvestre G, Rodríguez-Abalde A, Fernández B, Flotats X, Bonmatí A (2011) Biomass adaptation over anaerobic co-digestion of sewage sludge and trapped grease waste. Biores Technol 102:6830–6836CrossRefGoogle Scholar
  106. Speece RE, Boonyakitsombut S, Kim M, Azbar N, Ursillo P (2006) Overview of anaero-bic treatment: thermophilic and propionate implications. Water Environ Res 78(5):460–473CrossRefGoogle Scholar
  107. Stams AJM, Plugge CM (2009) Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat Rev Microbiol 7(8):568–577CrossRefGoogle Scholar
  108. Svensson BH, Dubourguier HC, Prensier G, Zehnder AJB (1992) Clostridium quinii sp. nov., a new saccharolytic anaerobic bacterium isolated from granular sludge. Arch Microbiol 157:97–103Google Scholar
  109. Thauer RK (1998) Biochemistry of methanogenesis: a tribute to Marjory Stephenson. Microbiology 144:2377–2406CrossRefGoogle Scholar
  110. Vanwonterghem I, Evans PN, Parks DH, Jensen PD, Woodcroft BJ, Hugenholtz P, Tyson GW (2016) Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota. Nat Microbiol 1Google Scholar
  111. Vavilin VA, Rytov SV, Lokshina LY (1996) A description of hydrolysis kinetics in anaerobic degradation of particulate organic matter. Biores Technol 56:229–237CrossRefGoogle Scholar
  112. Venkiteshwaran K, Bocher B, Maki J, Zitomer D (2015) Relating anaerobic digestion microbial community and process function. Int J Microbiol Insights 8:37–44Google Scholar
  113. Vital M, Howe AC, Tiedje JM (2014) Revealing the bacterial butyrate synthesis pathways by analyzing (meta)genomic data. MBio 5Google Scholar
  114. Vrieze J, Hennebel T, Verstraete W (2012) Methanosarcina: the rediscovered methanogen for heavy duty biomethanation. Biores Technol 112:1–9CrossRefGoogle Scholar
  115. Wang J, Wan W (2009) Factors influencing fermentative hydrogen production: a review. Int J Hydrogen Energy 34:799–811CrossRefGoogle Scholar
  116. Wang K, Yin J, Shen D, Li N (2014) Anaerobic digestion of food waste for volatile fatty acids (VFAs) production with different types of inoculum: effect of pH. Biores Technol 161:395–401CrossRefGoogle Scholar
  117. Wang P, Wang H, Qiu Y, Ren L, Jiang B (2018) Microbial characteristics in anaerobic digestion process of food waste for methane production—a review. Biores Technol 248:29–36CrossRefGoogle Scholar
  118. Weiland P (2010) Biogas production: current state and perspectives. Appl Microbiol Biotechnol 85:849–860CrossRefGoogle Scholar
  119. Wofford NQ, Beaty PS, McInerney MJ (1986) Preparation of cell-free extracts and the enzymes involved in fatty acid metabolism in Syntrophomonas wolfei. J Bacteriol 167:179–185CrossRefGoogle Scholar
  120. Wood HG, Ljungdahl L (1991) Autotrophic character of acetogenic bacteria. In: Variations in autotrophic life. Academic Press Books, pp. 201–250Google Scholar
  121. Xing J, Criddle C, Hickey R (1997) Effects of a long-term periodic substrate perturbation on an anaerobic community. Water Res J 31:2195–2204CrossRefGoogle Scholar
  122. Yatawara MDMDWMMK (2015) Generation of biogas from degradable organic wastes, lesson 32. In: Practical manual for GCE A/L biosystem technology teachers, pp. 227–236Google Scholar
  123. Yen HW, Li RJ, Ma TW (2011) The development process for a continuous acetone–butanol–ethanol (ABE) fermentation by immobilized Clostridium acetobutylicum. J Taiwan Inst Chem Eng 42:902–907CrossRefGoogle Scholar
  124. Yi J, Dong B, Xue Y, Li N, Gao P, Zhao Y, Dai L, Dai X (2014) Microbial community dynamics in batch high-solid anaerobic digestion of food waste under mesophilic conditions. J Microbiol Biotechnol 24:270–279CrossRefGoogle Scholar
  125. Yoo M, Croux C, Meynial-Salles I, Soucaille P (2017) Metabolic flexibility of a butyrate pathway mutant of Clostridium acetobutylicum. Metab Eng 40:138–147CrossRefGoogle Scholar
  126. Yue Z, Yu H, Wang Z (2007) Anaerobic digestion of cattail with rumen culture in the presence of heavy metals. Biores Technol 98:781–786CrossRefGoogle Scholar
  127. Zhang C, Su H, Baeyens J, Tan T (2014) Reviewing the anaerobic digestion of food waste for biogas production. Renew Sustain Energy Rev 38:383–392CrossRefGoogle Scholar
  128. Zhao H, Li J, Liu J, Lü Y, Wang X, Cui Z (2013) Microbial community dynamics during biogas slurry and cow manure compost. J Integr Agric 12:1087–1097CrossRefGoogle Scholar
  129. Zhou M, Yan B, Wong JWC, Zhang Y (2017) Enhanced volatile fatty acids production from anaerobic fermentation of food waste: a mini-review focusing on acidogenic metabolic pathways. Biores Technol 248:68–78CrossRefGoogle Scholar
  130. Zhu J (2000) A review of microbiology in swine manure odor control. Agr Ecosyst Environ 78:93–106CrossRefGoogle Scholar
  131. Zhu H, Parker W, Basnar R, Proracki A, Falletta P, Beland M, Seto P (2009) Buffer requirements for enhanced hydrogen production in acidogenic digestion of food wastes. Biores Technol 100:97–102CrossRefGoogle Scholar
  132. Zinder SH (1993) Physiological ecology of methanogens. In: Methanogenesis, pp. 128–206CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Thamarys Scapini
    • 1
    Email author
  • Aline Frumi Camargo
    • 1
  • Fábio Spitza Stefanski
    • 1
  • Natalia Klanovicz
    • 1
  • Rafaela Pollon
    • 1
  • Jessica Zanivan
    • 1
  • Gislaine Fongaro
    • 1
    • 2
  • Helen Treichel
    • 1
  1. 1.Laboratory of Microbiology and Bioprocess, Department of Environmental Science and TechnologyFederal University of Fronteira SulErechimBrazil
  2. 2.Department of Microbiology, Immunology and Parasitology (MIP), Laboratory of Applied VirologyFederal University of Santa CatarinaFlorianópolisBrazil

Personalised recommendations